
This paper describes a system that combines stereo vision with a 5-DOF robotic
manipulator, to enable it to locate and reach for objects by sight.

Our system uses an algorithm, a simple but robust approxima-
tion to the geometry of stereo vision, to estimate positions and surface orien-
tations. It can be calibrated very easily with just four reference points. These
are de�ned by the robot itself, moving the gripper to four known positions (

).
The inevitable small errors are corrected by a feedback mechanism which

implements of the gripper's position and orientation. Inte-
gral to this feedback mechanism is the use of which
track the real-time motion of the gripper across the two images.

Experiments show the system to be remarkably immune to unexpected trans-
lations and rotations of the cameras and changes of focal length | even after it
has `calibrated' itself.

A future goal is to use a�ne stereo to implement shape-based grasp planning,
enabling the robot to pick up a wide range of unidenti�ed objects left in its
workspace. At present it can only pick up simple wooden blocks and tracks a
single planar contour on its target object.
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When humans grasp and manipulate objects, they almost invariably do so with the
aid of vision. Visual information is used to locate and identify things, and to decide
how (and if) they should be grasped. Visual feedback helps us guide our hands around
obstacles and align them accurately with their goal. gives us
a 
exibility and dexterity of movement that no machine can match.

Vision systems for robotics usually need to be | the camera geometry
must be measured to a high degree of accuracy. A well-calibrated stereo rig can
accurately determine the positions of things to be grasped [10]. However, if calibration
is erroneous or the cameras are disturbed, the system will fail gracelessly.

An alternative approach in hand{eye applications where a manipulator moves to
a visually-speci�ed target, is to use visual feedback to match manipulator and target
positions . Exact spatial coordinates are not required, and a well-chosen
feedback architecture can correct for quite serious inaccuracies in camera calibration
(as well as inaccurate kinematic modelling) [13].

Here we demonstrate the use of a model of stereo vision which,
though of modest accuracy, is robust to camera disturbances and is easy to calibrate.
In fact, the system calibrates itself automatically whenever it is initialised by observing
the robot's gripper moving to four reference points.

Closed-loop control is achieved by tracking the gripper's movements across the
two images to estimate its position and orientation relative to the target object.
This is done with a form of resembling a B-spline snake [3] but
constrained to deform only a�nely.
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The full perspective transformation between world and image coordinates is conven-
tionally analysed using the model, in which image-plane coordinates
( ) are ratios of world coordinates ( ) in a camera-centred frame, thus:
= = . The relation between the camera-centred and some other

world coordinate frame consists of ( ) and ( ) components repre-
senting the camera's orientation and position. Using homogeneous coordinates (with
scale factor for convenience),

=
r r r t
r r r t
r r r t

1

(1)

Consider a camera viewing a compact scene of interest from distance . For conve-
nience, we can translate the whole system so that the scene lies close to the world
origin. t , the component of along the optical axis, will then equal . As distance
increases relative to the radius of the scene, will tend to unity for all points, and
the projection becomes approximately linear:

=
r r r t
r r r t

1

(2)

This formulation assumes that images are not distorted by variations in depth, and
is known as [9]. It is an orthographic projection scaled by a factor
inversely proportional to . It can be shown that this assumption results in an
error which is, at worst, � times the scene's image size. Where small objects are
viewed from two or three metres distance, as in many practical vision applications,
the assumption of weak perspective is reasonable.

The relation between ( ) and ( ) can
be modelled by an a�ne transformation (to represent o�sets, scaling and shearing),
and the entire projection written very simply as a linear mapping:

=
p p p p
p p p p

1

(3)

The eight coe�cients p e�ciently represent all intrinsic and extrinsic camera pa-
rameters [11]. This simple approximation to the projection transformation will be
used as the camera model throughout the paper.

There are many situations in computer vision where an object must be as its
image moves across a view. Here we consider the simple, but not uncommon, case
where the object is small and planar.

We can de�ne a coordinate system centred about the object itself so that it lies
within the plane. If the object is small compared to the camera distance, we again
have weak perspective, and a special case of (3):
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2.1 Assumption of weak perspective

2.2 Motion of planar objects in weak perspective

2 Weak Perspective and A�ne Stereo
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We see that the transformation from a plane in the world to the image plane is
a�ne. As the camera moves relative to the object, parameters a will change and
the image will undergo translation, rotation, divergence and deformation, but remain

(�gure 1).
This is a powerful constraint that can be exploited when tracking a planar object.

It tells us that the shape of the image will deform only a�nely as the object moves,
and that there will exist an a�ne transformation between any two views of the same
plane.

Under the weak perspective assumption, the two image coordinates of each point are
a linear projection of its world coordinates. To recover all three world coordinates it
is obvious that two (or more) views are needed. It is then necessary to identify which
features in the di�erent views correspond to the same point in space, a task known
as the .

The image positions of a world feature in two images are not independent, but
are related by an . In weak perspective stereo, this takes the form
of a single linear constraint among the four image coordinates. Most correspondence
algorithms exploit this constraint, which reduces the search for matching features to
a single dimension.

We assume that the cameras do not move relative to the scene during each period
of use. Combining information from a pair images, we have four image coordi-
nates ( ) for each point, all linear functions of the three world coordinates
( ):

=

1

(5)

Here [ ] is a 4 4 matrix, formed from the p coe�cients of (3) for the two
cameras. To calibrate the system it is necessary to observe a minimum of four non-
coplanar , yielding sixteen simultaneous linear equations from which
[ ] may be found.

than with full-perspective stereo, because the
system has fewer parameters and is amenable to solution by linear techniques (full
projective stereo can be represented by 24 linear coe�cients but there are nonlinear
constraints on those coe�cients [4]). With noisy image data, greater accuracy may
be obtained by observing more than four points, using a recursive linear estimator.

Once the coe�cients are known, world coordinates can be obtained by inverting
(5), using a least-squares method to resolve the redundant information. Errors in
calibration will manifest themselves as a linear distortion of the perceived coordinate
frame.

X
Y

x
y :

X; Y;X ; Y
x ; y ; z

X
Y
X
Y

x
y
z

:

�

a�ne-invariant

Correspondence Problem

epipolar constraint

reference points

Calibration is better conditioned

Correspondence and the epipolar constraint

The a�ne stereo formulation

P

P

PP

PP

2.3 A�ne stereo

� � � �2
4

3
5

2
664

3
775

2
664

3
775

2
664

3
775



T

T

0

0

It is essential to calibrate a stereo vision system to obtain useful 3-D infor-
mation about the world. Instead, four of the points observed may be given arbitrary
world coordinates (such as (0 0 0), (0 0 1), (0 1 0) and (1 0 0)). The appropri-
ate solution for [ ] will de�ne a coordinate frame which is an arbitrary 3-D a�ne
transformation of the `true' Cartesian frame, preserving a�ne shape properties such as
collinearity and coplanarity. This is in accordance with Koenderink and van Doorn's

[8].
In hand{eye applications, it might instead be convenient to calibrate the vision

system in the coordinate space in which the manipulator is controlled (assuming this
maps approximately linearly to Cartesian coordinates).

Any two views of the same planar surface will be a�ne-equivalent, and there will
exist an a�ne transformation that maps one image to the other. This transformation
can be used to recover surface orientation [2]. Surface orientation in space is most
conveniently represented by a surface normal vector . We can obtain it by the vector
product of two non-collinear vectors in the plane.

Consider the standard unit vectors ^ and ^ in one image and suppose they were
the projections of some vectors on the object surface. If the linear mapping between
images is represented by a 2 3 matrix , then the �rst two columns of itself will
be the corresponding vectors in the other image. As the centroid of the plane will
map to both image centroids, we can easily use it and the above pairs of vectors to
�nd three points in space on the plane (by inverting [ ] ) and hence the surface
orientation.

An (or ) [7] is a curve de�ned in the image plane that moves
and deforms according to various `forces'. These include , which are
local properties of the image, and which are functions of the snake's
own shape. Typically, a snake will be attracted to maxima of image intensity gradient,
and used to track the edges of a moving object.

Our model-based trackers are a novel form of active contour. They resemble B-spline
snakes [3] but consist of (in the order of 100) discrete sampling points, rather than a
smooth curve [6]. We use them to track planar surfaces bounded by contours, on the
robot gripper and the object to be grasped. Pairs of trackers operate independently
in the two stereo views. The trackers can deform only a�nely, to track planes viewed
in weak perspective [1]. This constraint leads to a more e�cient and reliable tracker
than a B-spline snake, that is less easily confused by background contours or partial
occlusion.

Each tracker is a model of the image shape it is tracking, with sampling points at
regular intervals around the edge. At each sampling point there is a
which measures the o�set between modelled and actual edge positions in the image,
by searching for the maximum of gradient along a short line segment [5]. Due to
the so-called [12], only the normal component of this o�set can be
recovered at any point (�gure 2).
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The positions of the sampling points are expressed in a�ne coordinates, and their
image positions depend upon the tracker's and two . These
are described by six parameters, which change over time as the object is tracked.
The contour tangent directions at each point are also described in terms of the basis
vectors.

At each time-step the tracker moves and deforms to minimise the sum of squares
of o�sets between model and image edges. In our implementation this is done in
two stages. First the optimal translation is found, then the deformation, rotation,
divergence components are calculated. Splitting the task into these two stages was
found to increase stability, as fewer parameters were being estimated at once. To �nd
the optimal translation to account for normal o�set at each sampling point whose
normal direction is , we solve the following equation:

= + (6)

is the error term, and we solve the whole system of equations using a least-squares
method to minimise .

Once the translation has been calculated, the other components are estimated. It
is assumed that the distortion is centred about the tracker's local origin (normally its
centroid, to optimally decouple it from translation). The e�ects of translation ( )
are subtracted from each normal o�set, leaving a residual o�set. We can then �nd
the matrix that maps image coordinates to displacement.

( ) = ( ) + (7)

where is the sampling point's position relative to the local origin and is again
the error term to be minimised.

In practice this formulation leads to trackers that are as willing to distort as to
translate, which can cause problems when the tracked surface moves whilst partially
obscured. We therefore use a simpli�ed version of this equation that ignores the
aperture problem (equating the normal component with the whole displacement):

( ) = + (8)

is a vector, and our implementation solves the equations to minimise . This
produces a more stable tracker that, although sluggish to deform, is well suited to
those practical tracking tasks where motion is dominated by the translation compo-
nent. The tracker positions are updated from and using a �rst-order predictive
�lter. This enhances performance when tracking rapidly-moving objects.

A�ne stereo is a simpli�ed stereo vision formulation that is very easily calibrated.
Conversely, it is of rather low accuracy. Nevertheless, it gives reliable
information about the relative positions of points and can, of course, indicate when
they are in precisely the same place. We therefore use a feedback control mechanism
to help to guide the gripper to the target, using a�ne stereo to compute the relative
position and orientation of their respective tracked surfaces.

Since the reference points used to self-calibrate are speci�ed in the
coordinate space, linear errors in the kinematic model are e�ectively bypassed. The
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system must still cope with any nonlinearities in control, as well as those caused by
strong perspective e�ects.

An integral feedback control architecture is employed. The feedback term is the
di�erence between the vectors that describe the position and orientation of the target
and gripper, as seen by the vision system. This term is integrated by summing at
each time step, and the resulting vector used to position the robot (�gure 3).

The manipulator moves in discrete steps, through a distance proportional to the
di�erence between the gripper's perceived coordinates and those of the target plane.
The gain is below unity to prevent ringing or instability, even when the vision system
is miscalibrated. This process is repeated until the perceived positions of the two
coincide (or, for grasping, we can introduce a �xed o�set).

The system is implemented on a Sun SPARCstation 10 with a Data Cell S2200 frame
grabber. The manipulator is a Scorbot ER-7 robot arm, which has 5 degrees of free-
dom and a parallel-jawed gripper. The robot has its own 68000-based controller which
implements the low-level control loop and provides a Cartesian kinematic model. Im-
ages are obtained from two inexpensive CCD cameras placed 2m{3m from the robot's
workspace. The angle between the cameras is in the range of 15{30 degrees.

When the system is started up, it begins by opening and closing the jaws of the
gripper. By observing the image di�erence, it is able to locate the gripper and set up
a pair of a�ne trackers as instances of a 2-D template. The trackers will then follow
the gripper's movements continuously. Tracking can be implemented on the Sun at
frame rate. The robot moves to four preset points to calibrate the system in terms of
the controller's coordinate space.

A target object is found by similar means | observing the image changes when
it is placed in the manipulator's workspace. Alternatively it may be selected from a
monitor screen using the mouse. There is no pre-de�ned model of the target shape, so
a pair of `exploding' B-spline snakes [3] are used to locate the contours delimiting the
`target surface' in the two images. The snakes are then converted to a pair of a�ne
trackers. The two trackers are made a�ne-equivalent so that the surface orientation
can be recovered easily from their basis vectors. The target surface is then tracked,
in case it is moved, or to compensate for camera motions.

The orientation of the gripper of a 5-DOF manipulator is constrained by its `miss-
ing' axis, and this constraint changes continuously as it moves. To avoid this problem,
the present implementation keeps the gripper vertical, reducing the number of degrees
of freedom to four. Its orientation is then described by a single . It is assumed
that the target plane is also vertical.

By introducing modi�cations and o�sets to the feedback mechanism (which would
otherwise try to superimpose the gripper and the target), two `behaviours' have been
implemented. The causes the gripper to approach the target from
above (to avoid collisions) with the gripper turned through an angle of 90 degrees, to

roll angle

grasping behaviour
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grasp it normal to its visible surface. The causes it to follow the
target continuously, hovering a few centimetres above it (�gure 5).

Without feedback control, the robot locates its target only approximately (typically to
within 5cm in a 50cm workspace). With a feedback gain of 0.75 the gripper converges
on its target in three or four control iterations. If the system is not disturbed it
will take a straight-line path. The system has so far demonstrated its robustness by
continuing to track and grasp objects despite:

Linear o�sets or scalings of the controller's coordinate system
are absorbed by the self-calibration process with complete transparency. Slight
non-linear distortions to the kinematics are corrected for by the visual feedback
loop, though large errors introduce a risk of ringing and instability unless the
gain is reduced.

The system continues to function when its cameras are
subjected to small translations, rotations and zooms, even after it has self-
calibrated. Large disturbances to camera geometry cause the gripper to take a
curved path towards the target, and require more control iterations to get there.

The condition of weak perspective throughout the workspace
does not seem to be essential for image-based control and the system can func-
tion when the cameras are as close as 1.5 metres (the robot's reach is a little
under 1 metre). However the feedback gain must be reduced to below 0.5, or
the system will overshoot on motions towards the cameras.

Figure 5 shows four frames from a tracking sequence (all taken through the same
camera). The cameras are about two metres from the workspace. Tracking of position
and orientation is maintained even when one of the cameras is rotated about its optical
axis and zoomed.

The current system is based upon matching the positions and orientations of two
. Since the gripper and target planes must be visible in both images at all

times, neither can rotate through more than about 120 degrees. We intend to develop
the system to track the gripper using a three-dimensional rigid model [6], drawing
information from both images simultaneously. We also aim to identify and track more
than one of the surfaces of the object to be grasped, both for 3-D tracking and also
for analysis of its 3-D shape.

We plan to equip such a system with a grasp planner that uses the relative posi-
tions, sizes and orientations of the visible surfaces on the object, to direct the robot
to grasp unmodelled objects in a suitable way.

A�ne stereo provides a robust interpretation of image position and disparity that
degrades gracefully when cameras are disturbed. It is suitable for uncalibrated and
self-calibrating systems.

tracking behaviour

planes

Kinematic errors.

Camera disturbances.

Strong perspective.

5.3 Results
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By de�ning the working coordinate system in terms of the robot's abilities, linear
errors in its kinematics are bypassed. The remaining non-linearities can be handled
using image-based control and feedback. We have shown that this can be achieved
cheaply and e�ectively using a novel form of snake to track planar features on the
gripper and target.

Such a system has been implemented and found to be highly robust, without
unduly sacri�cing performance (in terms of speed to converge on the target).

The authors gratefully acknowledge the donation of a robot manipulator by the
Olivetti Research Lab. Cambridge, and the �nancial support of SERC.

[1] A. Blake, R. Curwen, and A. Zisserman. A�ne-invariant contour tracking with
automatic control of spatiotemporal scale. In

, 1993.

[2] R. Cipolla and A. Blake. Surface orientation and time to contact from image di-
vergence and deformation. In G. Sandini, editor,

, pages 187{202. Springer{Verlag, 1992.

[3] R. Cipolla and A. Blake. Surface shape from the deformation of apparent con-
tours. , 9(2):83{112, 1992.

[4] R. Cipolla, Y. Okamoto, and Y. Kuno. Robust structure from motion using
motion parallax. In , 1993.

[5] R. Curwen and A. Blake. Dynamic contours: real-time active splines. In A. Blake
and A. Yuille, editors, . MIT Press, 1992.

[6] C. Harris. Tracking with rigid models. In A. Blake and A. Yuille, editors,
. MIT Press, 1992.

[7] M. Kass, A. Witkin, and D. Terzopoulos. Snakes: active contour models. In
, pages 259{268, 1987.

[8] J.J. Koenderink and A.J. van Doorn. A�ne structure from motion.
, pages 377{385, 1991.

[9] L.G. Roberts. Machine perception of three-dimensional solids. In J.T. Tippet,
editor, . MIT Press, 1965.

[10] M. Rygol, S. Pollard, and C. Brown. A multiprocessor 3d vision system for
pick-and-place. In , 1990.

[11] R.Y. Tsai. An e�cient and accurate camera calibration technique for 3D machine
vision. In , 1986.

[12] S. Ullman. . MIT Press, Cambridge,USA,
1979.

[13] D.F.H. Wolfe, S.W. Wijesoma, and R.J. Richards. Eye-to-hand coordination for
vision-guided robot pick-and-place operations. In , 1990.

Proc. 4th Int. Conf. on Computer

Vision

Proc. 2nd European Conference

on Computer Vision

Int. Journal of Computer Vision

Proc. 4th Int. Conf. on Computer Vision

Active Vision

Active

Vision

Proc. 1st Int. Conf. on Computer Vision

J. Opt. Soc.

America

Optical and Electro-optical Information Processing

British Mach. Vision Conf.

Proc IEEE CVPR 86

The interpretation of visual motion

J. Adv. Manuf. Eng

Acknowledgements

References



Affine  Stereo

     System

Inverse Kinematic

Model

Cameras

Gripper

Target

Gripper
(x, y, z, r)

Target
Controller
(x, y, z, r)

Gain

Controller

(x, y, z, r)

Systematic Offset

INTEGRATOR

Delay
according to
grasping method

Image edge

Active Contour

Figure 1: The gripper being tracked as it translates and rotates in weak perspective.
The origin and sampling points of the tracker are shown in white. The front of the
gripper is approximately planar, and its image shape remains a�ne-invariant.

Figure 2: An active contour: an edge-�nder searches normal to the contour at each
sampling point (arrows). Only the normal component of the o�sets can be recovered
locally (the aperture problem). The optimal translation (dotted) can only be found
globally.

Figure 3: The control structure of the system, showing the use of visual feedback.



Figure 4: A stereo pair showing the robot gripper at one of the four reference points
used for calibration. Active contour models are overlaid in white.

Figure 5: The robot is tracking its quarry, guided by the position and orientation of
the target contour (view through left camera). On the target surface is an
| an a�ne tracker obtained by `exploding' a B-spline snake from the centre of the
object. A slight o�set has been introduced into the control loop to cause the gripper
to hover above it. Last frame: one of the cameras has been rotated and zoomed, but
the system continues to operate successfully with visual feedback.

a�ne snake


