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Summary

This dissertation describes new applications of uncalibrated and weakly calibrated

stereo vision to facilitate pick-and-place operations by a robot manipulator.

A `weakly calibrated' stereo rig is one for which only a small number of reference

observations have been made (for instance, by observing the robot itself making

deliberate motions) and which might be subject to vibrations and small movements

during use. Thus the epipolar geometry and camera parameters will be known only

approximately. In such an environment, it is shown that an approximate linear

model (the a�ne camera) is well suited to estimating both the epipolar constraint,

and the relation between image measurements and the robot's coordinate system

(the hand{eye relation).

The stereo system is used to track a pointing hand, implementing a vision-based

user interface which allows the operator to specify objects to be grasped and to

guide the robot's motion around the workspace. By considering only the plane

projectivities between the images and a ground plane, it is shown that points on the

plane may be indicated without calibration.

A novel stereo algorithm is developed to match line segments in weakly calibrated

views and recover a description of the planar surfaces of objects in the robot's

workspace. These can then be reconstructed in an approximate metric frame for

grasp planning.

The tracking system employed in this project is a novel type of edge-seeking

active contour, based on a template which can deform only a�nely in the images.

This can be used for tracking the operator's hand, the robot's gripper, and planar

facets of objects in the workspace.

By tracking the robot itself, visual feedback can be employed to align the robot's

gripper accurately with the surface to be grasped, even in the face of disturbances

to the stereo cameras or the robot's control systems. Visually guided grasping is

implemented in real time on standard hardware.
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Chapter 1

Introduction

This chapter sets out the motivation for the project, and introduces robot

hand{eye coordination with a survey of existing robot vision systems.

The contributions of the dissertation are summarised.

1.1 Motivation

When humans grasp and manipulate objects, they almost invariably do so with the

aid of vision. Visual information is used to locate and identify things, and to decide

how they should be grasped. Visual feedback helps us guide our hands around

obstacles and align them accurately with their goal. Hand{Eye Coordination gives

us a 
exibility and dexterity of movement that no machine can yet match.

Robot manipulators have traditionally been restricted to performing repetitive

tasks in highly ordered environments. Reliable and 
exible computer vision would

enable them to operate in less structured environments containing displaced or un-

familiar objects; to overcome operational errors using visual tracking and feedback;

and to be programmed more easily via novel user interfaces such as gestures and

pointing.

Because most robots need to move in all three dimensions, we exploit stereo

vision, the use of two (or more) cameras to obtain 3-D information about the robot

and its workspace. The scope of stereo vision applications is generally limited by

the need to calibrate the vision system | the camera geometry must be measured to

a high level of precision [129]. A well-calibrated stereo rig can accurately determine

the position and shape of things to be grasped; however, if calibration is erroneous

or the cameras are disturbed, the system will often fail gracelessly.

1



CHAPTER 1. INTRODUCTION

Here we explore the use of robust algorithms for stereo vision and hand{eye

coordination which require minimal calibration and can tolerate some uncertainty

in camera and robot positions and orientations. We develop a novel visual grasping

system which uses vision to help plan and execute grasps of unmodelled objects

placed at unknown positions in its workspace. The user indicates an object by a

pointing gesture, and uncalibrated stereo vision is used to reconstruct its surfaces.

Finally, the object is grasped by the robot under visual control.

Two strategies are employed to reduce dependence on calibration: �rstly, by the

use of invariant cues and representations of scene structure which are independent

of camera geometry; secondly by the use of image-based feedback to correct for errors

and align the robot with a visible target. Implementation is based on monochrome

CCD cameras and a standard workstation environment.

1.2 Robot vision hardware

1.2.1 Con�gurations

A number of systems have been proposed using machine vision to help robot manip-

ulators perform pick-and-place operations. The vision hardware may consist of one

or more monochrome or colour video cameras, or more sophisticated devices such

as structured light or laser range�nders [16, 116, 75]. Figure 1.1 shows two common

con�gurations:

Eye-in-hand systems have a camera mounted on the last link of the robot manipu-

lator. This gives a detailed view of objects to be grasped, and facilitates visual

servoing to align the gripper prior to grasping [21, 31, 27]. It also permits dy-

namic inspection of the target object from multiple viewpoints, a�ording a

3-D reconstruction of their surfaces [22, 125].

Eye-in-hand cameras typically su�er from a limited �eld of view and depth

of �eld, so do not provide an overall picture of the workspace. They require

camera calibration and a priori knowledge of the camera pose relative to the

gripper, since these parameters cannot be recovered by self-calibration [48].

The entire visual �eld also moves whenever the robot does, which can increase

image-processing overheads [134].
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External camera or `independent-eye' systems view both the manipulator and its

workspace using one or more distant cameras. By observing the manipulator

making known motions, self-calibration is possible [61], and feedback may be

used to drive the gripper to a visually-speci�ed target con�guration regardless

of camera position [134, 48].

With static external cameras, objects in the workspace tend to be viewed at a

lower resolution than with a robot-mounted camera. The cameras may instead

be mounted on pan/tilt heads, or an integrated stereo head [89]; zoom lenses

may be employed for detailed inspection of parts as well as a broader view

of the workspace [124]. Additional 
exibility may be gained by mounting one

or more cameras on an independent robot arm to allow dynamic control of

viewpoints [19, 90], although this is clearly more expensive to implement.

1.2.2 Experimental setup

For this project, an external camera system is employed, with a pair of monochrome

CCD cameras arranged for stereo vision (�gure 1.2). The cameras view a robot

manipulator and its workspace from a distance of about 2m; their �eld of view can

also accommodate an operator, who can communicate with the system by means of

pointing gestures. The angle between the cameras is in the range of 15{30 degrees.

There is some 
exibility in the positioning of the cameras, which are mounted on free-

standing tripods: since these tend to be disturbed frequently, accurate calibration

data are not available.

The experimental system is based around a Sun SPARCstation 20 with a Data

Cell S2200 frame grabber. The manipulator is a Scorbot ER-7 robot arm, which

has 5 degrees of freedom and a parallel-jawed gripper. The robot has its own 68000-

based controller which implements the low-level dynamic control loop and provides

a Cartesian kinematic model: the computer controls the robot and supplies it with

visual feedback by means of a serial interface.
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(a)

(b)

Figure 1.1: Robot/camera con�gurations: (a) eye-in-hand (b) external cameras

Figure 1.2: The experimental setup showing the robot, its workspace, stereo cameras

and operator.

4



1.3. EXISTING SYSTEMS

1.3 Existing systems

Here previous work in computer vision for robot manipulator guidance is reviewed

(particular techniques and relevant theory will be surveyed in more detail in later

chapters).

1.3.1 Look and move

The earliest paradigm for hand{eye coordination has become known as the `look-

and-move' approach [48]. Vision is used only in the planning of motions, which are

executed without visual assistance.

In two dimensions. Early robot vision systems [15, 97, 51], and many still in

widespread use, have a single overhead camera to extract two-dimensional

information about the positions of features on a part to be grasped, to recover

its 2-D pose or to select di�erent robot actions based on object recognition.

This approach minimises the computation spent on vision, since the camera is

used only once per operation, to analyse a static scene. Frequent recalibration

is required to maintain satisfactory operation [15].

Binocular stereo vision. A recent hand{eye system [112] based on the She�eld

Tina stereo vision algorithms of Pollard et al. [103] uses a pair of calibrated

cameras which view straight-edged objects taken from a modest repertoire.

The system constructs a wire-frame model of the objects' edges [100] which is

matched against stored models of the objects [99]. Objects are identi�ed and

picked up by an RTX robot using pre-determined grasps.

Other ranging techniques. An experimental system of Ikeuchi et al. [62] recon-

structs the contents of a workspace using photometric stereo, in which a camera

takes multiple images of the scene under di�erent lighting conditions, to recover

local surface orientation. This information is supplemented by range data pro-

vided by the Prism stereo system [93], which projects random texture onto

the scene and matches the resulting views by a multi-scale algorithm. These

techniques allow it to reconstruct, recognise and grasp objects with smooth,

featureless surfaces which would otherwise be di�cult to see.

Robot planning systems have been proposed using other specialised sensors,

such as laser range�nders which reconstruct surface shapes from a single `view'
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[16, 75, 111]. Range imaging can recover the shapes of arbitrary surfaces more

accurately than stereo [16]; however the sensors are expensive and require

precise calibration.

Tracking and interception of moving targets. Vision can also be used to per-

form dynamic tasks involving moving objects. Allen et al. [1] describe a stereo

vision system which can track a single target at frame rate, using a Kalman

�lter to estimate and predict its motion. The system is demonstrated using

a robot arm to intercept and grasp a model train. Other high-speed stereo

tracking systems have been used to perform tasks such as striking a ping-pong

ball [2, 107]. As with all of the above systems, there is no visual feedback of

the grasping operation, which is not robust to physical disturbances.

Open loop robot vision has become very sophisticated, and has been demonstrated

successfully in pick-and-place and other applications. However, it requires accurate

calibration so that the imaging and kinematic processes can be inverted without

error, and demands high repeatability from the robot manipulator. The need for

precision is most acute in the 3-D case, due to the increased number of parameters

to be known and the added complexity of both robot and vision systems [119].

1.3.2 Visual feedback in two dimensions

In these systems, a single camera observes a manipulator from above, to guide the

gripper's motion in two dimensions. The third dimension of movement is assumed

to be constrained or controlled by an independent mechanism, as in many `2-and-a-

half dimensional' robots which manipulate objects on a 
at table, and whose vertical

motion is limited and independent of the main X{Y motion.

Visual feedback for gripper alignment. The seminal work of Shirai and Inoue

[117] reported the use of visual feedback to align a square prism over a box

into which it is then �tted. The dimensions and heights of the objects were

given, but the initial position of the box was unknown, and there was some

uncertainty in the alignment of the prism within the gripper. Vision was used

to estimate the two-dimensional position and orientation of the box, to place

the prism over it. The system then observed the prism, estimated the error in

its position and orientation, and made corrective motions.
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A similar system was presented in [19] as a `behavioural module' for an exist-

ing model-based manipulation system (the Edinburgh somass system [77]).

Here the manipulator moves across a horizontal approach plane to align itself

vertically with a target, in preparation for grasping. Vision is used to track

markers on the two �ngers of the gripper, to provide visual feedback. It is

noted that there is a 1-to-1 mapping between the approach and image planes,

so that feedback can be based directly on the di�erence between observed and

desired image positions.

Dynamic visual control. Most visual feedback systems use a hierarchy of two

control loops: an inner one using joint sensors to control the robot's dynamics

and an outer, slower loop incorporating vision. However, a few systems at-

tempt to integrate the two using �eld-rate tracking of simple features on the

manipulator [48]. In one experimental setup, a manipulator moves across a


at table and is viewed from above by a single camera [134]. The same camera

is used to locate the target object during the planning phase. A point on the

end-e�ector is marked by a beacon which allows it to be tracked at 50Hz to

provide position-based feedback during execution. It is shown that the inte-

gration of visual feedback into the controller permits e�cient operation and

fast convergence despite signi�cant errors in camera calibration or kinematic

modelling.

Because of the simple 1-to-1 mapping between world and camera coordinates, visual

feedback is an e�ective way to null positioning errors in two dimensions [136]. For

fast, e�cient operation, visual tracking of the end-e�ector (and/or its target) is

required, to continuously update the estimate of the error between the manipulator's

actual and desired pose.

1.3.3 Single camera feedback for 3-D tasks

These systems deal with the positioning of a robot in three dimensions under visual

control, using either an eye-in-hand or external camera.

Hybrid system with 2-D vision. Harrel et al. [54] describe an eye-in-hand sys-

tem to guide a fruit-picking robot. This system is notable by its use of colour

vision to segment citrus fruits from the background and track them. The

vision system provides two-dimensional feedback, controlling two degrees of
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freedom of the arm to keep the camera �xated on the fruit as it approaches;

the distance is measured independently by ultrasonic ranging.

Single camera pose estimation. Espiau et al. [31] consider the use of visual feed-

back to place a calibrated camera in a given pose relative to visible features.

They derive analytically the image Jacobian (that is, the matrix encoding the

di�erential relation between camera motions and changes in image measure-

ments) as a function of image feature positions. Inverting this relation allows

the robot to make appropriate movements to bring the image features into a

speci�ed con�guration, constraining the camera pose with respect to the tar-

get. This is demonstrated for the alignment of an `eye-in-hand' camera with

respect to a known target object.

A�ne visual servoing. In the case where the target features are con�ned to a

plane, the interaction between image and world motion is simpli�ed. Colombo

and Crowley [27] present a system which tracks features on a target surface

and positions a camera at a given pose relative to the surface, deriving the

gains for image-based control from a weak perspective [108] approximate pose

estimation.

Spratling and Cipolla [121] present a similar system which requires no calibra-

tion but continuously re-estimates the image Jacobian from recent motions,

to bring the camera into the pose corresponding to a goal image. They track

the target surface using an active contour, and estimate the a�ne transforma-

tion between observed and goal con�gurations from area moments, making it

correspondence-free [113].

The construction and attainment of an image-based goal requires a model of the

camera and of the object to be manipulated [133, 31]; and pose estimation from

a single view is ill-conditioned when the camera is distant [53]. Therefore, single-

camera servoing is best suited to calibrated eye-in-hand systems.

1.3.4 Stereo visual feedback

Systems have also been proposed using stereo visual feedback to improve the accu-

racy of 3-D manipulation.

Image-speci�ed manipulation. Skaar et al. [119, 18] consider the case in which

known points on a manipulator are sporadically observed by two or more cam-
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eras, but continuous stereo tracking is not possible. They introduce a simple

orthographic camera model and show that the estimated camera parameters

also absorb linear errors in the kinematics: this allows the system to predict

the con�guration which will bring the gripper to a visually-speci�ed target in

two or more views. By appropriately weighting a set of observations, they are

able to solve for the local hand{eye relation in any region of the workspace,

allowing 6-DOF1 alignment of a gripped object with a visually-speci�ed target.

Stereo image-based feedback. Hollinghurst and Cipolla [61] demonstrated the

use of stereo tracking of a robot manipulator whose kinematics are (approxi-

mately) known, using visual feedback to align it with a target. A linear camera

model is assumed. An extension of this system is described in chapter 3.

Hager et al. [50] present a similar system, using stereo image-based feedback

for 6-DOF positioning. Approximate camera calibration is used to estimate

the image Jacobian, but the system is shown to be insensitive to calibration

errors. Hager then considers the use of visual feedback to enforce one or

more constraints (with 6 DOF or less) between the end-e�ector pose and that

of another object, using least-squares solutions in both the underconstrained

and overconstrained cases [49]. Visual constraints are used to assist dextrous

tasks such as the insertion of a 
oppy disk into a drive.

Multiple cameras simplify the problems of setting and attaining visually-speci�ed

goals for 3-D positioning, and allows the manipulation of unmodelled objects (whose

pose cannot be determined in a single view). Such systems are robust to small errors

in the robot's kinematic model and allow precise manipulation tasks to be performed.

1.3.5 Learning systems for hand{eye coordination

Some systems deal with unknown robot kinematics as well as unknown camera pa-

rameters by considering the visual kinematic relation between actuator settings and

parameters extracted from the image. Since robot kinematics are usually highly

nonlinear, the structure of this relation must be learnt either before or during oper-

ation.

Mel's MURPHY. Mel [85, 86] took inspiration from human learning to devise a

vision-guided control and planning system that learns by doing. It controls

1That is, control of both position and orientation in three dimensions.
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a 3-DOF planar arm and guides it to a visible target whilst avoiding obsta-

cles. Murphy learns the forward visual kinematic relation, taking an unusual

approach by learning to `envisage' an entire 64�64 image of the arm in any

con�guration. It is this whole-image-based approach that is the key to its

collision-avoiding behaviour. It also learns the inverse di�erential kinematic

relation by observing how the gripper position responds to changes in actuator

settings. Learning takes place in an initial `random 
ailing' stage in which it

views about 17000 of the 3 million legal arm con�gurations. These models

are used by a path planner, which is based upon heuristic depth-�rst search.

A trajectory is planned in joint space, to reach the target avoiding obstacles.

Despite promising initial results and a refreshingly simple approach, Murphy

is slow, and scales badly to higher degrees of freedom. Its neural network

architecture could not e�ciently model the simple geometry underlying the

camera and kinematic relation.

3-D visual kinematic learning. Herv�e et al. [58, 59] take a qualitative approach

to visual kinematic learning by identifying the singularities in the joint space /

sensor space transformation (points where jJj = 0, i.e. the inverse di�erential

relation is not de�ned). Away from these singularities, the hand{eye relation is

smooth and can be navigated using feedback. The robot makes experimental

motions to determine the gradient of its Perceptual Control Surface. It builds

up a qualitative model of the PCS by noting when it encounters a singularity

in the Jacobian, and plans paths which avoid these singularities.

Visual memory-based control can be used to control manipulation by a multi-

�ngered hand, whose kinematics are di�cult to model analytically, by tracking

the position and orientation of a grasped object. The system of J�agersrand et

al. [63] estimates the Jacobian of the visual kinematics relation; that is, the

matrix of coe�cients relating the movement of each joint to movements in the

image of the grasped object [48], using exploratory movements to obtain its

components in various directions. As it moves, it builds up a piecewise linear

model of this relation, with uncertainty analysis used to ascertain the region

of trust for each linear patch.

Learning-based control can be useful when controlling a redundant or multi-�ngered

manipulator (which would otherwise be di�cult to model [63]), but in general this

is unnecessary and ine�cient. Qualitative modelling of the hand{eye relation can

also be used in conjunction with visual feedback [59].
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1.4 The approach

Traditional robot vision systems have attempted accurate reconstruction, using met-

ric information to plan and execute motions in an open loop [112, 1, 107]; but

these require calibration and are not robust to disturbances. Systems have also

been proposed using image-based feedback with varying calibration requirements

[117, 134, 31]. Sometimes the characteristics of the robot itself are learnt along with

the parameters of the vision system [59, 133, 63].

Here we address the case in which the cameras are uncalibrated but the robot's

kinematics are known (perhaps imperfectly), allowing the end-e�ector to be con-

trolled in terms of Cartesian coordinates with a small, smooth error function. In

the absence of accurate calibration, it is reasonable to resort to an approximate

linear model of stereo vision. The Cartesian hand-eye relation is monotonic and can

be modelled by a linear relation.

The use of a kinematic model simpli�es the learning of the hand{eye relation

(a linear estimator will su�ce), whilst the use of visual feedback retains robustness

against small kinematic errors and even non-stationary camera parameters. Such an

approach has been used very successfully for visual robot control in two dimensions.

Here it is applied to stereo vision for three-dimensional control of position and

orientation. We track the robot's gripper in stereo with active contours, and use

visual feedback to servo its image position in the two views.

To exploit visual feedback in grasping operations, the manipulator's goal con�g-

uration must be speci�ed in terms of image measurements. Indication of the target

object must therefore be image-based, and this can be achieved using a visual user

interface. We use stereo vision to form an a�ne reconstruction of the facets of the

target object in an image-based coordinate frame. This representation is used in

conjunction with visual feedback to align the robot gripper with a suitable facet of

the target object, so that it may be grasped.

Thus the entire grasping operation is to be facilitated by uncalibrated stereo

vision.
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(a) (b)

(c) (d)

(e) (f)

Figure 1.3: Surface reconstruction for grasping: (a,b) stereo images of the workspace

with edges superimposed; (c,d) unmatched (light) and matched (dark) line segments;

(e) cyclopean view with planar facets identi�ed; (f) proposed grasping sites.
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1.5 Contributions

1.5.1 A�ne stereo

In this dissertation, it is argued that a linear approximate camera model is well suited

to practical uncalibrated stereo, both for solving the correspondence problem and

for modelling the relation between world and image motions, whenever the camera

con�guration resembles the typical `parallel' arrangement with equidistant cameras

�xating on a compact scene. It is noted that the epipolar geometry of a stereo rig

is qualitatively di�erent from that found in many navigation/structure-from-motion

applications in which the camera motion is largely along the optical axis. The

restricted form of the a�ne camera makes it easier to compute approximate camera

parameters from a small number of measurements, than the projective camera model

estimated in the traditional manner. A�ne stereo is shown to be more robust to

image coordinate noise and disturbances to the cameras.

1.5.2 Pointing interface

A novel form of human{robot interface is presented, based on real time stereo vision

tracking of the operator's pointing hand. We do not use a full 3-D reconstruction of

the hand in space, but consider only plane projectivities between a ground plane and

the images. This formulation allows objects on a plane to be indicated by pointing,

without the need for camera calibration. Simulations and experiments measure the

accuracy of the system, both in open loop and as a means for the operator to servo

the position of the robot's gripper.

1.5.3 Weakly calibrated stereo reconstruction

A new stereo matching algorithm is developed for matching line segment images

in weakly calibrated stereo pairs (in which the epipolar geometry is only approx-

imately known because only a few reference correspondences have been observed)

under weak perspective. Integrated into the system is the grouping of line segments

into planar facets. This provides a model of the scene which is suitable for grasp

planning with a parallel gripper (�gure 1.3). It also allows the visible surfaces to be

reconstructed accurately despite uncertainty in the epipolar geometry, which is not

generally possible for individual line segments. The reconstruction is used to select

a suitable grasp of the target object.
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1.5.4 Visual feedback for grasping

The linear approximation to the `hand{eye relation' between the robot's movements

and motion in the images is used as the basis of a visual feedback control loop,

allowing the robot to be guided in three dimensions towards a visually speci�ed

target. The robot is aligned so that a surface of its gripper is near to and coplanar

with a given surface of the object; then rotated into the grasping con�guration. It

is shown that such an approach is robust to calibration errors of either the robot or

vision system, and even to disturbances to the system occurring during operation.

1.6 Overview of the dissertation

Chapter 2 gives a general introduction to the geometry and modelling of stereo

vision systems, and derives the camera models which are referred to later in

the dissertation.

� Conventional projective and a�ne models of video camera imaging are

introduced. The theory of camera calibration and the epipolar geometry

of stereo vision are reviewed for each model.

� The a�ne and projective camera models are compared in the context of

parallel-camera stereo vision, and it is concluded that the a�ne camera

is more robust to errors and more easily calibrated.

� This is supported by experiments and simulations comparing projective

and linear models degraded by noisy data. It is shown that the systematic

error due to the linear approximation is of comparable magnitude to other

errors, e.g. noise in image in feature localisation.

Chapter 3 describes the use of the a�ne stereo formulation developed above to

achieve alignment of the robot with a visually-speci�ed target, using stereo

visual feedback.

� A visual feedback scheme is developed for the a�ne stereo formulation.

It is noted that, for point alignment, image-based and position-based

servoing are equivalent under this model.

� We extend the feedback scheme to align both the position and orientation

of planar features on the robot and target object.
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� The system is implemented using a�ne active contours to track a surface

of the robot's gripper. By tracking the target facet as well as the robot,

we close the visual control loop and enable the system to track and grasp

objects despite movements and disturbances to the cameras.

� Experiments show that this system is robust to camera motions and small

errors in the robot's kinematic model.

Chapter 4 describes a novel human{robot interface based on pointing. This is the

proposed means for indicating to the system which object is to be grasped.

� The geometry of pointing at a ground plane is analysed, and it is shown

that this does not require camera calibration, apart from 4 matching

reference points on the plane.

� It is shown how this method may be used to indicate points on a single

plane or in an environment containing multiple planes.

� Methods for tracking a pointing hand are summarised, and a novel im-

plementation is developed using a pair of a�ne active contours to track

the thumb and index �nger.

� Experimental results and accuracy evaluation are presented.

Chapter 5 discusses the stereo correspondence and reconstruction of a scene com-

posed mainly of straight edges and planar surfaces.

� Previous approaches to solving the correspondence problem in stereo vi-

sion are reviewed, and their shortcomings discussed in the context of

uncalibrated or weakly calibrated setups of the kind used in this project.

� A stereo matching algorithm is developed, based on existing work for line

segment matching but explicitly allowing for a bounded error in epipolar

constraint estimation.

� Uncalibrated plane grouping is incorporated into the system, exploiting

the geometry of weak perspective views of coplanar features.

� The groupings are used to extract a description of the planar surfaces of

objects for reconstruction, and to improve the accuracy of uncalibrated

reconstruction.
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Chapter 6 is concerned with the implementation of the complete visual grasping

system.

� The theory of grasping is brie
y reviewed, with particular emphasis on

grasp synthesis for a parallel-jawed gripper.

� A scheme is devised for choosing grasping sites on a stereo reconstruction

of the surfaces of the target object, and demonstrated on real images of

`blocks world' scenes.

� The algorithms described in the dissertation are integrated to form a

complete system.

Chapter 7 reviews the �ndings and contributions of the dissertation, and concludes

with an outline of future work.

Appendix A describes the novel type of active contours used in the project. These

are based on a template and are able to deform only a�nely. They are suitable

for the real time tracking of planar objects or facets under weak perspective,

as well as for tracking the index �nger and thumb of a pointing hand.
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Chapter 2

Perspective and A�ne Stereo

In this chapter we review the geometry of monocular and stereo cameras,

and show that an approximate linear model of stereo vision is robust and

well-suited to uncalibrated and weakly calibrated systems.

2.1 Introduction

In order to make geometrical use of stereo vision we must model the relation between

the three-dimensional world and two-dimensional images. Speci�cally, we will need

to use stereo to reconstruct the shapes of objects in the robot's workspace in order to

grasp them successfully, and to associate relative image positions with 3-D motions

to drive the robot to its target con�guration.

This chapter reviews the geometrical modelling of the perspective camera; its

generalisation, when full calibration data are not available, to the projective camera;

and a useful linear approximation, the a�ne camera. Essential theory for stereo

vision is summarised in each case, describing the relation between a stereo pair

of views, and the use of calibrated and uncalibrated stereo systems to reconstruct

points and surfaces.

Numerical experiments will be used to demonstrate the superiority of the a�ne

camera for the estimation of the epipolar constraint and the reconstruction of relative

positions in three dimensions, when calibration data are noisy and few | it is this

weakly calibrated stereo model that is used in chapter 3 to control a robot and in

chapter 5 to facilitate stereo correspondence and the reconstruction of planar facets.
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2.2 The perspective camera

2.2.1 Pinhole camera

Video cameras are conventionally analysed using the pinhole camera model , in which

an image is projected onto a retinal plane by rays passing through a single point

called the optical centre [32]. This point forms the origin of a camera-centred co-

ordinate frame, (Xc; Yc; Zc) such that the retinal plane has the equation Zc = f ,

where f is a constant, the focal length. Image coordinates (xi; yi) on the retina are

ratios of world coordinates (Xc; Yc; Zc) thus: xi = fXc=Zc yi = fYc=Zc. This simple

model is a good approximation to the optics of most types of camera, although it

neglects e�ects such as lens distortion which are signi�cant in some high-accuracy

applications such as aerial photogrammetry [128].

The relation between the camera-centred and some other world frame (such as

that de�ned by a robot or another camera) is a rigid motion, encoding the camera's

orientation and position. It can be represented by an orthogonal rotation matrix

R, and a translation vector t. Using homogeneous coordinates [8] with a tilde to

symbolise equivalence up to a scale factor,
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2.2.2 Projective camera

Measurements on the image plane are not made directly, because the image is sam-

pled into pixels. The relation between retinal positions (xi; yi) and pixel addresses

(u; v) is modelled by an a�ne transformation (to represent o�sets, scaling and shear-

ing) [32]. Aligning the pixel and retinal coordinate systems so that the v and yi

directions coincide,
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The 5 coe�cients1 fku, fkv, fkuv, u0 and v0 are the camera's intrinsic parameters,

and the R and t components can be expressed in terms of 6 extrinsic parameters.

Combining these relations, we obtain the direct linear transformation (DLT) form

of the camera model [128]:
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This is the usual camera model for many vision systems where the camera intrinsics

and pose are not initially known [32]. The transformation matrix is de�ned up to a

scale factor, thus there are 11 degrees of freedom.

2.2.3 Camera calibration

Calibration of the camera is necessary to �x the 11 unknowns in the 12 parameters

pij. This can be done by observing at least 6 points of known position, not all

coplanar. Each observation generates two homogeneous equations in terms of pij.

The system is homogeneous, so we can constrain p34 = 1 and solve using linear

least squares estimation. If image positions are noisy, the results can be improved

by observing more than 6 points using a recursive linear estimator. Often a special

calibration object with very accurate grids is used [6].

In practice, the linear method is somewhat ill-conditioned, and a large number of

reference points are needed, which must be localised to sub-pixel accuracy [129]. This

is because the error measure, when formulated linearly in pij, is not geometrically

meaningful; the last row and column have di�erent numerical dimensions and play

di�erent roles in the model. A number of calibration methods have been proposed

based on nonlinear (iterative) optimisation and reparameterisations of P, and these

give somewhat better results [37, 130].

Having obtained the DLT form, the intrinsic and extrinsic parameters can be

extracted if required. For any 3�4 matrix of rank 3, scaled so that jjp31 p32 p33jj =

1, it can be shown [32] that there exist four sets of camera parameters satisfying

equation (2.2), the four solutions being trivially related by changes of sign. The

optical centre can be recovered directly, by solving PC = 0.

1Often, kuv is taken to be zero [32]. This assumes rectangular pixels in the camera and complete

decoupling of horizontal and vertical coordinates in the frame capture hardware. Thus there will

be only 4 intrinsic parameters, and an additional constraint will be imposed on camera calibration.
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Once the intrinsic parameters of the camera are known, pixel coordinates can be

converted back to normalised image coordinates (xi=f; yi=f; 1): these would be the

image-plane coordinates for a pinhole camera of unit focal length, and are equivalent

up to a scale factor to the camera-centred world coordinates. Hence directions and

angles may be measured at the optical centre.

Camera calibration must be repeated whenever the camera lens is replaced,

zoomed or refocused (change of f), or the camera position is disturbed (change of

R, t). This project was motivated by a desire to avoid full camera calibration, and

explores the use of formulations that work satisfactorily with few or no calibration

measurements.

2.2.4 Viewing a plane

Consider the case in which several observed points line on a single plane. Thus in

some world coordinate system they will all have Z = 0, and equation 2.2 loses one

column of the camera transformation to become:
2
6664

u

v

1
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fku fkuv u0

0 fkv v0

0 0 1
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1

3
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We see that the relation between plane and camera coordinates is a 2-D projectivity,

preserving projective invariants of features on the plane [88]. If the intrinsic param-

eters are known, R and t (the camera pose relative to the plane) can be computed

up to a two-fold ambiguity from just 3 known points, by exploiting the nonlinear

constraints among elements of the rotation matrix [53]. If camera parameters are

not known, a minimum of 4 reference points are needed to �x the 2-D projective

relation between the world plane and the image coordinate system [109], allowing

points and structures on the plane to be reconstructed from a single view.
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2.3 Full perspective stereo

In general, a single camera gives only two-dimensional information about scene

structure. In the absence of other constraints, two or more views are required for

reconstruction.

2.3.1 The epipolar constraint

The image coordinates of a world feature in two images are not independent, but

are related by an epipolar constraint . This comes about from the fact that 4 image

coordinates are derived from only 3 degrees of freedom in world positions. Consider a

family of planes passing through the optical centres of both cameras. These project

to a family of epipolar lines in each image (�gure 2.1). If a feature lies upon a

particular line in the left image, the corresponding feature must lie upon the line

in the right image, which is the projection of the same plane. Most stereo systems

exploit this constraint, which reduces the search for matching features to a single

dimension [98].

Epipolar plane

Left
Camera

Right
Camera

Epipolar line
through image point

Point in the world

Epipoles

Figure 2.1: The epipolar geometry of stereo vision
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Fundamental matrix

The epipolar constraint is represented algebraically by a 3�3 matrix F called the

fundamental matrix [32] such that corresponding points (u; v) and (u0; v0) satisfy:

h
u0 v0 1

i
F

2
6664

u

v

1

3
7775 = 0: (2.5)

This is a generalisation of Longuet-Higgins' essential matrix [72], which encoded

the relation between camera-centred coordinates in two views, to the case where

intrinsic parameters are not known. F has rank 2 and is de�ned up to a scale factor,

i.e. the constraint has 7 degrees of freedom.2 The epipole in each view is the image

of the other camera's optical centre (i.e. o�PC0, using homogeneous coordinates

for o and C0). The epipoles can be extracted from the fundamental matrix itself:

Fo = 0 and FTo0 = 0; that is, they are in the right and left nullspaces of F.

In calibrated systems, F can be recovered from the camera matrices [32], other-

wise it may be obtained up to a threefold ambiguity by observing 7 corresponding

points [127], or estimated by linear least squares given 8 corresponding points [72].

Epipolar geometry can be estimated from image coordinates alone without reference

to world coordinates; however, degeneracy occurs when the points all lie on a critical

surface such as a plane, cone or cylinder [73, 36]. As with camera calibration, the

solution is sensitive to errors and may require more than 8 points and/or nonlinear

optimisation [76].

Linear form

In the general case, epipolar lines will meet at a single point in each image plane,

the epipole, which is the image of the other camera's optical centre [32]. However,

if the cameras' focal planes (Zc = 0, Z 0

c = 0) coincide, the epipoles will be points

at in�nity and the epipolar lines parallel. In this case, the �rst 2�2 elements of F

become zero, and the epipolar constraint is a single linear equation in u, v, u0, v0

and a constant term [115].

In practical stereo rigs each camera is usually far outside the other camera's �eld

of view, and the linear form of the epipolar constraint is often valid (at least as a

�rst approximation when only a small number of correspondences have been found).

2The loss of rank can be explained by considering F as a projective correlation between points

in one image and lines in the other. To be an epipolar constraint, all points on an epipolar line

must yield the same line when multiplied by F: the matrix is therefore singular.
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The linear approximation to the epipolar constraint can be recovered from just

4 corresponding points in uncalibrated stereo. This form of the constraint is incor-

porated into the a�ne stereo model introduced in section 2.5.

Image recti�cation

The simplest possible form of the epipolar constraint occurs when the cameras have

the same intrinsic parameters and are separated by a pure translation in the Xc

direction (parallel cameras). The constraint becomes: v0 = v, i.e. corresponding

points must lie on the same horizontal scan line in each image, and object depth is

encoded by horizontal disparities along the scan lines. This simpli�es the problems of

stereo correspondence and reconstruction, and many stereo vision algorithms require

images in this form [103, 6]. The purpose of image recti�cation is to transform images

(or the image coordinates of features) so that the epipolar constraint takes this form,

even when they were taken through non-parallel cameras.

If the cameras are calibrated, recti�cation is achieved by projective transforma-

tions of image points into a new coordinate system (x; y) so that y0 = y for all

matching points. The recti�cation transformations simulate the rotation of each

camera until they are parallel, and the scaling and shifting of one image to bring the

scan lines into agreement [32]. If the epipolar geometry is known but not the cam-

era intrinsics, the recti�cation transformations are de�ned up to 9 free parameters,3

usually chosen for numerical convenience [6].

2.3.2 Reconstruction

With calibration

Assume that both cameras have been calibrated for the same world coordinate frame.

By rearrangement of (2.3), each measurement of (u; v) yields two simultaneous linear

equations in (X; Y; Z), which represent the line of sight from a camera to a point

in the world. Two views of the same point give us four linear equations which can

be solved, e.g. by a least squares method. Numerical optimization can be used to

improve robustness to noise (at the expense of speed), by minimising the o�sets in

image coordinates between observed and backprojected features [32].

3The epipolar constraint has 7 DOF, but a general pair of projective transformations on the

two images would have 8 + 8 = 16 DOF.
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Intrinsically calibrated cameras

For cameras with calibrated optics but unknown pose, the rotation and direction

of translation between the views may be estimated. The essential matrix (which is

the fundamental matrix de�ned in terms of normalized image coordinates [72]) is

computed from the intrinsic parameters and the image coordinates of at least 7 cor-

respondences. It can then be decomposed [32] into the product of an antisymmetric

matrix T and an orthogonal rotation matrix R. T encodes the translation and is

de�ned up to a scale factor; thus the scene may be reconstructed up to a similarity.

Uncalibrated cameras

The extraction of non-metric and viewpoint-invariant information from completely

uncalibrated cameras is a rapidly developing �eld in machine vision [88, 3, 10].

For instance, given two uncalibrated views of 8 corresponding points (from which

the fundamental matrix can be recovered), it is possible to reconstruct the scene up

to a 3-D projective transformation4 [35, 33]. 5 of the points are used as a projective

basis in space, i.e. they are assigned the coordinates (1; 0; 0; 0), (0; 1; 0; 0), (0; 0; 1; 0),

(0; 0; 0; 1) and (1; 1; 1; 1). Likewise, 4 of them form a projective basis in each of the

images. Using these coordinate systems, each camera transformation matrix takes

the form: 2
6664

�a� � 0 0 �

0 �b� � 0 �

0 0 �c� � �

3
7775

where (a; b; c) are the projective image coordinates of the �fth point. The coordinates

of the optical centre can also be expressed in terms of a b, c, � and �. Thus,

each camera model is �xed up to one degree of freedom, the ratio � : �. Faugeras

shows how this may be eliminated using the epipolar constraint between views [35],

exploiting the relation between the epipoles and the optical centres of the cameras.

This result can be extended by noting that we are within 3 degrees of freedom

of an a�ne reconstruction of the scene. The 3 missing parameters encode a repre-

sentation of the plane at in�nity within the above projective basis, and these may

be recovered by observing e.g. 3 vanishing points of parallel lines [105, 33].

4A projective representation of a 3-D scene is 9 DOF from Euclidean structure, allowing quite

serious distortions of the reconstructed scene. It is therefore most useful for applications such as

recognition of objects based on projective invariants [109].
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2.4 Weak perspective and the a�ne camera

The projective camera model has many parameters and is nonlinear in form, making

it di�cult to calibrate. We now consider a simpler �rst-order approximation, the

a�ne camera, as an alternative camera model for stereo vision.

2.4.1 Weak perspective

Let us assume that, within some region of the scene, the relative depth j�Zc=Zcj is

bounded by a small value (weak perspective [108]). Equation (2.1) becomes:

2
4 xi

yi

3
5 =

f

h

2
4 r11 r12 r13 t1

r21 r22 r23 t2

3
5

2
6666664

X

Y

Z

1

3
7777775
: (2.6)

where h = r3�p+t3, the normal distance between the focal plane (Zc = 0) and a point

p in the region of interest. We assume that h is constant across this region, i.e. that

the relation between world and image coordinates is linear. With a camera whose

intrinsic parameters are known, the Xc and Yc components of feature positions can

be recovered up to scale from a single view; and the camera pose can be estimated

from � 3 points in known con�guration [53]. This approximation to the camera

model is useful in tracking applications, where a compact object is observed moving

around a three-dimensional space [56]. Under weak perspective, any image of a

planar facet will be an a�ne transformation of the plane, encoding its depth and

orientation relative to the camera, and images of planes will deform a�nely under

motion [67, 21].

2.4.2 A�ne camera

Now if the depth of the entire scene is small compared to the camera distance, h

can be assumed constant. Consider the images in terms of pixel coordinates (u; v).

Without a knowledge of the intrinsic parameters, camera pose cannot be determined,

but the camera model is further simpli�ed:

2
4 u

v

3
5 =

2
4 u0

v0

3
5 +

2
4 m11 m12 m13

m21 m22 m23

3
5

2
6664

X

Y

Z

3
7775 ; (2.7)
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where (u0; v0) is the image of the world origin. This is equivalent to parallel projec-

tion followed by an arbitrary a�ne transformation in the image. It is known as the

a�ne camera model [88].

The a�ne camera can be calibrated by observing just 4 reference points. All

8 coe�cients are independent. Its linear form makes it less sensitive to calibra-

tion noise, since it can be optimised to minimise errors in the image coordinates

themselves. Where the assumption of weak perspective throughout the scene can

be made, it allows a more accurate camera model to be constructed from limited

calibration data [23].

2.5 A�ne stereo

With the a�ne camera model, image coordinates are linear functions (plus a con-

stant o�set) of the 3-D coordinates of points in the world. This simpli�es the epipolar

constraint, as well as calibrated and uncalibrated stereo reconstruction.

2.5.1 The a�ne stereo formulation

Combining information from a pair of images, we have four image coordinates (u; v),

(u0; v0) for each point, all linear functions of the three world coordinates (X; Y; Z):

2
6666664

u

v

u0

v0

3
7777775
=

2
6666664

u0

v0

u00

v00

3
7777775
+Q

2
6664

X

Y

Z

3
7775 : (2.8)

Q is a 4�3 matrix formed from the mij coe�cients of (2.7) for the two cameras.

It should be noted that the integration of information from more than two cameras

is easily accommodated within this framework: each additional view generates two

extra linear equations which can be represented by extra columns to Q.

2.5.2 The epipolar constraint in a�ne stereo

When a point is viewed in stereo, there are 4 image coordinates, all linear functions

of 3 world coordinates. These cannot be independent, but are related by a single

linear constraint: the epipolar constraint thus takes the linear form [115], and can

be estimated from a minimum of 4 corresponding points.
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2.5. AFFINE STEREO

To analyse the constraint, consider the 4-vector e satisfying QTe = 0, i.e. the

direction orthogonal to the three rows of Q. This is the annihilator for vectors

of the form Q[XY Z]T . Thus the epipolar constraint may be written:

e �

2
6666664

u� u0

v � v0

u0 � u00

v0 � v00

3
7777775
= 0: (2.9)

Geometrically, the epipolar planes are the family of planes parallel to both view-

ing directions c and c0 (the nullspace vectors of M and M0), so that the epipolar

line direction in the �rst image is parallel to Mc0, and in the second image to M0c.

Furthermore, it follows that [e1 e2]�Mc0 = 0 and [e3 e4]�M
0c = 0, since motion along

the epipolar lines does not violate the constraint.

Image recti�cation

To rectify a pair of images, each point must be represented in terms of linearly inde-

pendent coordinates (x; y) such that y = y0 for all matching points. This condition

is satis�ed when:

y = �Ae1(u� u0)� Ae2(v � v0) +B;

y0 = Ae3(u
0 � u00) + Ae4(v

0 � v00) +B (2.10)

for some scale factor A and o�set B. We can then use y and y0 values to �nd or

test for matching features in stereo. The recti�ed x coordinate is most conveniently

de�ned as the component parallel to the epipolar lines in each image, so that basis

vectors x̂, ŷ are orthogonal: thus recti�cation may be achieved using plane similarity

transformations (rotation, translation and scaling) in each image.

2.5.3 Reconstruction

Calibrated cameras

If all the coe�cients are known, world coordinates can be obtained by inverting

(2.8). Since the model is linear in both the world and image coordinates, least-

squares minimisation gives an optimal solution from (uncorrelated) noisy image

data. Errors in calibration will manifest themselves as an a�ne distortion of the

perceived coordinate frame [68].
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In hand{eye applications, it might instead be convenient to calibrate the vision

system in the coordinate space in which the manipulator is controlled (assuming

this maps approximately linearly to Cartesian coordinates). This can be done by

tracking the position of a robot gripper as it visits four prede�ned reference points

[61].

Uncalibrated cameras

In the absence of camera calibration, any four (non-coplanar) points may be given ar-

bitrary world coordinates (such as the canonical a�ne basis (0; 0; 0), (0; 0; 1), (0; 1; 0)

and (1; 0; 0)). The appropriate solution for Q yields an a�ne reconstruction of the

scene, which preserves a�ne shape properties such as collinearity, coplanarity and

ratios of parallel lengths. This is in accordance with Koenderink and van Doorn's

A�ne Structure-from-Motion Theorem [68].

2.5.4 Recovery of surface orientation from two views

Any two views of the same planar surface will be a�ne-equivalent: there will exist

an a�ne transformation that maps one image to the other. This transformation

can be used to recover surface orientation [21]. Let the linear mapping between the

views be represented by transformation matrix A and a 2-D translation vector.

It is the A component which encodes orientation. Consider the standard basis

vectors û and v̂ in one image and suppose they were the projections of some vectors

tangent to the surface. The columns of A itself will be the corresponding vectors in

the second image. By inspection, the epipolar constraint requires that:

e1 + e3a11 + e4a21 = 0;

e2 + e3a12 + e4a22 = 0: (2.11)

Two degrees of freedom remain. For purposes of visual servoing on surface ori-

entation, such transformations can simply be parameterised by the pair (a11; a12).

For reconstruction, we can form a surface normal vector n from the cross product

of two world-space vectors on the plane:

n = Q+

2
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3
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^Q+
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a12
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3
7777775

(2.12)

where Q+ is the pseudo-inverse (QTQ)�1QT [122].
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2.6 Comparison of perspective and a�ne stereo

A series of experiments and simulations were performed to compare the accuracy

of perspective and a�ne stereo models in cases where only a small number of cali-

bration measurements were available, or the camera positions were perturbed after

calibration. Two tasks were considered:

� recovery of the epipolar constraint , to facilitate stereo correspondence of two

images of an unknown object;

� estimation of the relative positions of points, to facilitate reconstruction of an

object and visual servoing to align a manipulator with it.

For the numerical simulations, two ideal pinhole cameras were simulated, facing

the origin from a distance of 3{24 units, displaced by a rotation of 20o about a

vertical axis (�gure 2.2). They observed reference and test points within a unit

cube centred about the origin. The focal length of the cameras varied with distance,

so as to keep a constant image size (for a vertical unit vector at the origin) of 320

pel. Figure 2.3 shows the appearance of the unit cube for camera distances of 3, 8

and 24 units.

2.6.1 Epipolar constraint recovery

These experiments measure the accuracy with which the epipolar constraint may be

estimated from a small number of reference points, in both the linear and funda-

mental matrix forms.

I. Accuracy of the linear model in noiseless simulations

With noiseless images, the fundamental matrix could be calculated with complete

accuracy from 8 corresponding points. The linear approximate epipolar constraint

was estimated, from 4 correspondences within the cube.5

For any point in the left view, an epipolar line may be predicted in the right. The

normal distance between this line and the corresponding point gives us a measure

of the error in the epipolar geometry model. Figure 2.4 shows the maximum and

RMS error for a grid of points �lling the unit cube. It can be seen that the errors

due to the linear model decrease with increasing camera distance.

5Coordinates (-.3,-.3,-.3), (-.3,.3,.3), (.3,-.3,.3), (.3,.3,-.3): a regular tetrahedron.
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Unit cube
Cameras

d

φ

Figure 2.2: The camera geometry used in the numerical simulations. � = 20o and

d varies from 3 to 24 units.

(a)

(b)

(c)

Figure 2.3: The appearance of the unit cube and epipolar lines viewed with the

simulated cameras from a distance of (a) 3 (b) 8 (c) 24 units. Image size 512 pel.
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II. Linear and fundamental-matrix models from noisy images

We now consider the case in which the epipolar geometry is estimated from noisy

correspondences. Image coordinates of the reference points had Gaussian noise

(� = 2:0 pel) added to each axis. Linear epipolar constraints were estimated from

4 and 8 points, and a fundamental matrix from 8 points,6 which is the minimum

number for an unambiguous solution. Their accuracy was measured as above, using

a grid of noiseless correspondences. Figure 2.5 shows the RMS error over 512 trials,

for camera distances ranging from 3 to 24. By constraining the epipolar geometry

to the linear form, greater robustness to noise is achieved.

III. From noisy image points and known world coordinates

If the world coordinates of the reference points are known, epipolar geometry may be

estimated more accurately by �rst solving for a pair of camera models (calibration).

Reference point image coordinates had 2:0 pel noise as before, but accurate world

coordinates were also available. This allowed a�ne and projective camera models

to be estimated from 4 and 6 points respectively. The models were then rearranged

to recover epipolar constraints, which take the fundamental-matrix and linear forms

respectively. Figure 2.6 shows the RMS error over 512 trials, for camera distances

ranging from 3 to 24. The use of world coordinates improves the estimate of the

fundamental matrix, but makes no di�erence to the linear form in the 4-point case.

IV. Real data

For this experiment we used images of a robot to de�ne 8 corresponding points,

whose world coordinates were also known. A�ne and projective camera models were

estimated using linear least squares. A real scene was them observed in stereo, and a

number of points of interest selected by hand in the left image. Figure 2.7 compares

the epipolar line structure predicted by both a�ne and full perspective stereo models

for matching these points. In this setup, in which the camera distances are about 2

metres, both models gave comparable accuracy | the RMS perpendicular error of

the points in the right image from their predicted epipolar lines was 3.6 pel in each

case. Furthermore, the a�ne model can predict epipolar lines using just 4 reference

points with su�cient accuracy to allow matching (RMS error 4.4 pel); perspective

stereo requires a minimum of 6 points.

6(-.3,-.3,-.3), (-.3,.3,.3), (.3,-.3,.3), (.3,.3,-.3), (.3,-.3,-.3), (.3,.3,.3), (-.3,-.3,.5), (.1, -.4, -.2).
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Figure 2.4: Worst-case and RMS error for the linear epipolar constraint.

Figure 2.5: RMS error for linear and fundamental-matrix constraints, estimated

from noisy correspondences (� = 2:0 pel) by least squares.

Figure 2.6: RMS error for linear and fundamental-matrix constraints, after noisy

calibration of a�ne and perspective camera models.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.7: Estimation of epipolar lines: (a,b) two views of 8 reference points de�ned

by the robot; (c) selected points in the left image; (d) epipolar lines estimated by

the projective camera model after calibration with 8 points; (e,f) epipolar lines

estimated by a�ne camera model with 8 points and 4 points respectively.
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2.6.2 Accuracy of reconstruction

To compare a�ne and full perspective stereo reconstruction, simulations were per-

formed measuring their ability to estimate the relative positions of points within the

unit cube.

I. Under ideal conditions

Without noise or other disturbances, perspective stereo estimates absolute and rela-

tive positions with complete accuracy (in our `pinhole camera' simulations, at least).

An a�ne stereo model was calibrated using 6 reference points. At close range it per-

forms poorly due to strong perspective distortion, but the error decreases in inverse

proportion to camera distance. Figure 2.8 shows the RMS error for estimating the

vector between a random pair of points within the unit cube (the average length of

such a vector is 0:707).

II. With noisy calibration

Adding 2:0 pel noise to the image coordinates of the reference points causes both

stereo models to lose accuracy (�gure 2.9). Perspective stereo is more sensitive to

noise because of its nonlinearity and greater degrees of freedom, and is less accurate

than the a�ne stereo approximation at larger camera distances (viewing an increased

number of reference points reduces the e�ects of noise and restores the accuracy of

perspective stereo).

III. With noisy image coordinates after calibration

When Gaussian noise is added to the image coordinates of the points whose relative

position is to be estimated (after accurate calibration), the e�ect is comparable on

both systems. The two models converge for camera distances above � 10 units

(�gure 2.10).

IV. Camera disturbances after calibration

In a laboratory or industrial environment it is possible for cameras to be disturbed

from time to time and subject to small rotations and translations. If this happens

after calibration, it will give rise to a corresponding error in stereo reconstruction.

Table 2.1 shows the average change in perceived relative position when one

camera is rotated or translated a small distance around/along each principle axis.
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Figure 2.8: RMS relative positioning error (for random point pairs in the unit cube)

as a function of camera distance, for the a�ne stereo model.

Figure 2.9: RMS relative positioning error as a function of camera distance, after

calibration with 6 noisy reference points (� = 2:0 pel).
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Figure 2.10: RMS relative positioning error from noisy images (� = 2:0 pel) of world

points after accurate calibration with 8 points.

Disturbance Change (A�ne) Change (Perspective)

Xc :Yc (roll) rotation 1o .0214 .0214

Xc :Zc (pan) rotation 1o .0007 .0468

Yc :Zc (tilt) rotation 1o .0006 .0049

Xc :Yc (roll) rotation 5o .1069 .1068

Xc :Zc (pan) rotation 5o .0095 .1867

Yc :Zc (tilt) rotation 5o .0056 .0769

Xc (epipolar) translation 0.1 .0119 .0207

Yc (vertical) translation 0.1 .0020 .0007

Zc (distance) translation 0.1 .0119 .0119

Xc (epipolar) translation 0.5 .0596 .1168

Yc (vertical) translation 0.5 .0102 .0139

Zc (distance) translation 0.5 .0574 .0572

Table 2.1: RMS change to relative position estimates of world points, caused by

disturbing one of the cameras after calibration. Camera distance 10 units.
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The two models are a�ected similarly by small movements, the worst of which is

Xc :Yc rotation about the optical axis (this is the only motion which, to �rst order,

changes the Q matrix of world{image coe�cients).

Perspective stereo is more sensitive to larger movements, and to rotations and

translations in the epipolar plane (in which a small error can induce large changes

of perceived depth), because it distorts nonlinearly.

2.7 Discussion

For a typical stereo setup with two cameras �xating on a compact scene, perspective

e�ects are small, and the epipoles will be far outside the image frames. In this

case, a linear model of the epipolar constraint is valid, and the errors due to the

linear approximation become comparable to other sources of error such as `noisy'

image measurements from trackers or feature detectors. It should be noted that the

conditions required for linear epipolar geometry are weaker than those for the a�ne

stereo model itself, which is accurate for camera distances more than � 10 times

the size of the scene.

Calibration is easier with a�ne stereo because the system has fewer parameters

and is amenable to solution by linear techniques. Even if it could be calibrated accu-

rately, the projective model is still more sensitive to errors and unexpected camera

movements after calibration. The linear form of the a�ne stereo model makes it

quite robust to calibration errors and changes. Even without calibration, it a�ords

an approximate a�ne reconstruction of any scene with more than 4 corresponding

points.

We do not attempt to use a�ne stereo to reconstruct absolute positions of points

in the scene (as would be used by a look-and-move manipulation system). That

would require accurately calibrated perspective camera models. Instead, we propose

to use the a�ne model to match and reconstruct small objects in the scene, and to

estimate the relative positions of nearby structures.

In chapter 3 the a�ne stereo formulation introduced here is used at the heart of

a visual feedback controller for executing a grasp operation speci�ed in terms of a

pair of images of a graspable surface.
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Chapter 3

Uncalibrated Stereo Visual

Feedback

The core task in hand{eye coordination is to align a robot with a visu-

ally speci�ed target. This chapter describes the use of visual feedback of

gripper position and orientation to align it with the target object. The

system does not require calibration, but estimates the a�ne stereo coef-

�cients by making three deliberate motions. It is even robust to small

camera motions during operation.

3.1 Introduction

If a stereo vision system were calibrated precisely, then the robot's gripper could be

sent directly to the coordinates of a visually-speci�ed target. However, this open-

loop approach is sensitive to errors in calibration and kinematic modelling. Instead,

we track the robot's gripper as it approaches the target, using visual feedback to

correct the errors in its trajectory.

A�ne stereo is a simpli�ed stereo vision formulation that is very easily calibrated,

but it is of limited open-loop accuracy. Nevertheless, it gives reliable qualitative

information about the relative positions of points and can, of course, indicate when

they are in precisely the same place. We therefore use it as part of a visual feedback

loop to align the robot gripper with its target, which is a planar facet of the object

to be grasped. Image-based feedback is used to null the error in the images, so as

to align their position and orientation despite camera modelling errors.
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3.2 Theory

3.2.1 Point to point alignment

First, we consider aligning a point attached to the robot (or de�ned in terms of an

a�ne coordinate system based on the robot) with a point speci�ed in the images.

Let the point on the robot be P . Its position is determined by a vector of (at

least 3) joint settings,�, which are related to Cartesian coordinates by the kinematic

function K:

XP = K(�): (3.1)

XP = [XP YP ZP ]
T , its world coordinates in a Euclidean frame. We wish to align

the robot with a visually-speci�ed `set point' S, speci�ed by image coordinates

uS = [uS vS u
0

S v
0

S]
T . Using the a�ne stereo model, we estimate its position:

X̂S = Q̂+(uS � û0); (3.2)

This is the inverse of equation (2.8), where Q̂+ models the left pseudo-inverse of Q.

Suppose that we also have an inverse model K̂�1 of the robot's kinematic function,

(if there are more than 3 joints, assume that the redundant degrees of � are con-

strained in an appropriate way). We could attempt to send the robot directly to

the con�guration corresponding to uS:

�OL = K̂�1(X̂S) (3.3)

This is the `look-and-move' approach. It fails to compensate for inaccuracies in the

inverse kinematic model K̂�1 and in the camera model (Q̂, û0) as well as for errors

due to strong perspective distortion.

Visual feedback

By tracking the robot's gripper, we can also obtain from its image position uP an

estimate X̂P of its world coordinates,

X̂P = Q̂+(uP � û0): (3.4)

Feeding back the relative position term X̂P � X̂S, a simple proportional control law

[120] may be devised to null the error:

_� = �gĴ�1
K
(X̂P � X̂S): (3.5)
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Ĵ�1
K

models the inverse di�erential kinematic relation [48] at the current robot con-

�guration, and g is an appropriate gain constant. The use of a term such as X̂P�X̂S

is known as position-based feedback . We can also express the control law in terms

of the image coordinate error term uP � uS (image-based feedback). We use our

estimates of the camera and kinematic models to provide a suitable gain:

_� = �gĴ�1
K
Q̂+(uP � uS): (3.6)

We note that, according to the a�ne stereo model, position-based and image-based

feedback are equivalent. This is because the world{image relation is modelled as

linear (cf. [49]). The combined kinematic-and-vision relation QJK (inverted in (3.6))

is sometimes called the image Jacobian [48].

Discrete implementation

In practice, due to the limited bandwidth between the computer vision system and

the robot controller, visual feedback is implemented as a discrete series of relative

motions of the gripper:

X�

P jt+1 = X�

P jt � kQ̂+(uP � uS); (3.7)

where X�

P is the vector of world coordinates passed to the inverse kinematic model;

that is, � = K̂�1(X�

P ). The gain term, k, governs the rate of convergence.

Convergence criteria

When does the visual feedback loop converge to the set point and when is it unstable?

De�ne X�

err = X�

P � X�

S where XS = K(K̂�1(X�

S)), and suppose that the error is

small, so that a �rst order model of K may be used. Equation (3.7) becomes:

X�

errjt+1 = (I� kQ̂+QJKĴ
�1
K
) X�

errjt : (3.8)

The error term will vanish and the system converge to the set point1 only if all the

eigenvalues of (I� kQ̂+QJKĴ
�1
K
) have absolute magnitude below unity [122]. For a

perfectly modelled system, Q̂+QJKĴ
�1
K

= I and the set point is reached in one step

by setting k = 1.

Setting 0 < k < 2 also leads to convergence, but values above 1 will cause

overshoots and ringing (which, in a robotic application, could lead to collisions!) To

prevent this whilst allowing for some inaccuracy in kinematic and camera modelling,

k should be set signi�cantly below unity, e.g. k = 0:75.

1We assume here that the set point is stationary.

41
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3.2.2 Position and orientation alignment

Suppose now that we wish to align a planar surface on the robot's end e�ector with

one speci�ed in the image. Alignment of position and surface orientation is a 5-DOF

constraint; additionally, if a vector on the robot is to be aligned with a distinguished

image direction, there are constraints on all 6 components of robot pose.

Recall from section 2.5, that the orientation of a surface is encoded by its a�ne

transformation between views, A. This has only two degrees of freedom and may be

represented by two components (a11; a12); the other two components can be obtained

using the epipolar constraint. An image-based representation of surface orientation2

is thus the vector o = [a11 a12]
T . The surface normal direction itself may easily be

obtained from o and an estimate of the Q matrix.

Image-based feedback of surface orientation

Let the robot now be controlled in terms of a desired position and orientation, where

the orientation is expressed in image-based terms:

� = K̂�1(X�

P ; F̂(o
�

P )); (3.9)

where K̂�1 is an inverse kinematic model for both position and orientation control,

and F̂ is a function to convert image-based orientations into some other parameter-

isation used by the robot.3

A suitable control law to align the gripper with a target is:

_� = �g(
@�

@X�

P

Q̂+(uP � uS) +
@�

@o�
P

(oP � oS)): (3.10)

Again, in practice it is convenient to use a discrete implementation, in which a

sequence of position and orientation demands are made:

X�

P jt+1 = X�

P jt � k1Q̂
+(uP � uS);

o�P jt+1 = o�P jt � k2(oP � oS): (3.11)

As before, the gain parameters k1, k2 should be set to values between 0 and 1.

2A third image-based parameter may be added to this vector to specify all 3 DOF of orientation.

3
F̂ depends on an estimate of Q.
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3.3 Simulations

A simple articulated robot was simulated, its origin at coordinates (�2:0; 0; �:5),

with two links of length 1.5 units (�gure 3.1). The position of the end-e�ector was

governed by three angles: waist (�1), shoulder (�2) and elbow (�3); the kinematic

function was:

XP = 1:5 cos �1(cos �2 + cos(�2 � �3))� 2:0;

YP = 1:5 sin �1(cos �2 + cos(�2 � �3)); (3.12)

ZP = 1:5(sin �2 + sin(�2 � �3))� 0:5:

The same simulated cameras were used here as in section 2.6, facing the origin from

a distance of 4:0 units. The inter-camera angle was 20o. A�ne stereo coe�cients

were estimated by observing 4 known points in a tetrahedron within the unit cube.

Setpoints were enumerated on a dense grid of points within the unit square and

the robot aligned with those points:

� Open loop, by inverting kinematic and camera models;

� Closed loop, using visual feedback with k = 1;

� Closed loop, using visual feedback with k = 0:5.

When using visual feedback, the initial position of the end e�ector in each trial was

the world origin in the centre of the unit cube.

S

θ2

θ3

Unit cube

O

2 units

θ1

Punits
1.5

1.5units

Figure 3.1: Articulated robot model used in the simulations
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I. Ideal case

An inverse kinematic model [120] was derived analytically from equation (3.12),

and the camera coe�cients estimated using noiseless reference points. In open loop,

the RMS positioning error for a point within the cube was .068 units, and the

maximum error .157 units. These errors are due to perspective distortion. With

visual feedback, however, the errors are reduced practically to zero (results are

summarised in table 3.1). Figure 3.2(a) shows the trajectory of the robot when the

set point is (:5; :5; :5) with k = 0:5. It is almost a straight line.

II. With erroneous kinematic model

The simulations were repeated, using a modi�ed inverse kinematic model which

moved �1 through 1.5 times the desired angle and added a 10o o�set to �3. This

seriously degraded open-loop positioning accuracy; however visual feedback with

k = 0:5 was able to correct the errors. In this case, better performance was obtained

with k = 0:5 than with k = 1, which lead to `ringing' and failure to converge in

some regions of the robot's con�guration space. See �gure 3.2(b).

III. After camera disturbances

This time the correct kinematic model was used, but the camera pose was changed

between observation of the reference points and alignment with the set points. One

of the cameras was translated 0.25 units upwards, the other rotated 10o about its

optical axis. Again, visual feedback was able to null the errors. See �gure 3.2(c).

Open loop k = 1 k = 0:5

RMS Max RMS Max RMS Max

No disturbance .068 .157 .0001 .0007 .013 .034

Kinematic error .263 .401 .036 .162 .012 .026

Camera disturbance .197 .361 .003 .023 .025 .071

Table 3.1: Results of simulations in which the end-e�ector was aligned with points

on a dense grid within the unit cube. RMS and maximum positioning errors after

6 iterations are shown.
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(a)

(b)

(c)

Figure 3.2: Simulated robot trajectories under visual feedback. The end e�ector

is converging on one corner of the unit cube: (a) ideal case (k = 0:5); (b) with

erroneous kinematic model (k = 1) showing `ringing' behaviour; (c) after camera

disturbances (k = 0:5).
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3.4 Experiment

3.4.1 Setup

When the system was started up, it began by opening and closing the jaws of the

robot's gripper. By observing the image di�erence, it was able to locate the gripper

and set up a pair of a�ne trackers as instances of a hand-made 2-D template. The

trackers could then follow the gripper's movements continuously. Stereo tracking was

implemented on the Sun at over 10 Hz. The robot then made a series of deliberate

motions, moving to four preset points to estimate the coe�cients matrix Q.

Since the reference points used to self-calibrate were speci�ed in the controller's

coordinate space (X�), linear errors in the kinematic model were e�ectively bypassed.

The system must still cope with any nonlinearities in control, as well as those caused

by strong perspective e�ects.

A target object was located by similar means | by observing the image changes

when it was placed in the manipulator's workspace. Alternatively it could be selected

from a monitor screen using the mouse. There was no pre-de�ned model of the target

shape, so a pair of `exploding' B-spline snakes [21] were used to automatically locate

the contours delimiting the target surface in each of the images. The snakes were

converted into a pair of a�ne trackers, by re-expressing their sampling points in

terms of an a�ne basis (see appendix).

The target surface was then tracked along with the gripper, to compensate for

unexpected motions of either the target or the cameras during operation.

3.4.2 Visual feedback loop

The orientation of the gripper of a 5-DOF manipulator is constrained by its lack

of a `yaw' axis, and the constraint changes continuously as it moves. To avoid this

problem, the test implementation kept the gripper vertical, reducing the number

of degrees of freedom to four. Its orientation could then be described by a single

roll angle. It was assumed that the target plane was also vertical. Their image

orientations were therefore described by a single quantity, a11.
4

The gains for position and orientation control are set well below unity at 0.75,

to prevent instability, even when the vision system is miscalibrated. The control

structure of the system is shown in �gure 3.4.

4It is assumed that the camera baseline is roughly horizontal, so that a11 varies with roll angle.
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Figure 3.3: A stereo pair showing the robot gripper at one of the four reference

points used for calibration. Active contour models are overlaid in white.

Cameras

Inverse Kinematic

Model

Gripper

Target

Controller

Controller

coords

Delay

INTEGRATOR

     System

Target

Image coords

Affine Stereo

Inverse model

Image coords

Gripper

Gain
Motion

Stereo Tracking

Figure 3.4: The control structure of the system, showing the use of visual feedback.
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3.4.3 Tracking and grasping behaviours

Without modi�cation, the visual feedback loop would attempt to superimpose the

robot gripper and target object in the images. By o�setting uP from the gripper's

centre, we introduce a constant o�set between gripper and target in space; the o�set

is de�ned in terms of a coordinate system attached to the gripper (in fact, the a�ne

basis of the tracking mechanism), so that it will be invariant to motions of the

cameras. We set the o�set so that the robot tracks the target object continuously,

hovering a few centimetres above a point on its top surface (�gure 3.5).

Once this pre-grasp position has been achieved, the object may be grasped reli-

ably using a pre-programmed motion, which consists of rotating the gripper through

90o and translating downwards (�gure 3.6). Depending on the type and shape of

object to be grasped, some other grasping motion could be substituted here.

3.4.4 Results

Without feedback control, the robot locates its target only approximately (typically

to within 5cm in a 50cm workspace). With a feedback gain of 0.75 the gripper con-

verges on its target in three or four control iterations. If the system is not disturbed

it will take a straight-line path. The system has demonstrated its robustness by

continuing to track and grasp objects despite:

Kinematic errors. Linear o�sets or scalings of the controller's coordinate system

are absorbed by the self-calibration process with complete transparency. Slight

nonlinear distortions to the kinematics are corrected for by the visual feedback

loop, though large errors introduce a risk of ringing and instability unless the

gain is reduced.

Camera disturbances. The system continues to function when its cameras are

subjected to small translations, rotations and zooms, even after it has self-

calibrated. Large disturbances to camera geometry cause the gripper to take

a curved path towards the target, and require more control iterations to get

there.

Strong perspective. The condition of weak perspective throughout the robot's

workspace does not seem to be essential for image-based control and the system

can function when the cameras are as close as 1.5 metres (the robot's reach is
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Figure 3.5: The robot is tracking its quarry, guided by the position and orientation

of the target contour (view through left camera). On the target surface is an a�ne

snake | an a�ne tracker obtained by `exploding' a B-spline snake from the centre

of the object. Last frame: one of the cameras has been rotated and zoomed, but

the system continues to operate successfully with visual feedback.

Figure 3.6: Robot grasping a planar target, using an active contour to recover its

size and orientation. The gripper is not tracked during the grasping manoeuvre.
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a little under 1 metre). However the feedback gain must be reduced to below

0.5, or the system will overshoot on motions towards the cameras.

Figure 3.5 shows four frames from a tracking sequence (all taken through the same

camera). The cameras are about two metres from the workspace. Tracking of

position and orientation is maintained even when one of the cameras is rotated

about its optical axis and zoomed.

3.4.5 Why not track Q?

Since the visual feedback system has been designed to be robust to changes in

the camera parameters (caused by movement of the cameras) during operation, an

obvious question is whether or not e�ciency can be improved by tracking these

changes. This was attempted in a version of the above experiment, using a Kalman

�lter [42] whose state vector encodes the camera model (Q̂; û0), which is updated

from subsequent observations of the robot gripper. However, this conferred little

or no detectable bene�t to the performance of the system.5 This is because it is

impossible, from a single observation of the gripper, to determine if an error in the

image location of the gripper is due to:

1. Strong perspective (temporary change in Q, u0),

2. Change in u0 caused by small camera rotations or translations,

3. Change in Q caused by large camera translations, zooming, or rotation about

the optical axis.

Only the last of these warrants tracking, and this was the least frequent change to

be observed. The errors due to perspective could to some extent be modelled by

`observation noise,' but there were no obvious values for `process noise' to enable

the other parameter changes to be distinguished. It was concluded that attempting

to track camera motions was not only ill-conditioned but also unnecessary.

5Except for a validation gate on the gripper's image coordinates, which was very useful for

detecting failures of the trackers and reinitialising them.
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3.5 Discussion

Here the e�ectiveness of a�ne stereo has been demonstrated for the task of aligning

a robot with a visually speci�ed target, in both position and orientation. In a

discrete-time implementation, rapid convergence is achieved with a gain of unity;

though if the system is disturbed from its initial con�guration, the gain should be

reduced to maintain stability and prevent overshoots which could lead to collisions.

The visual servoing system does not require camera calibration, but makes a

small number of deliberate motions to actively estimate the relation between hand

and eye. Even these are not always necessary, for instance if the cameras have been

rotated and then realigned by hand, the previous estimate of Q will normally still

be valid. It is not necessary, or even practical, to track these coe�cients over time.

By de�ning the working coordinate system in terms of the robot's abilities, linear

errors in its kinematics are bypassed. The remaining nonlinearities can be handled

using visual feedback. We have shown that this can be achieved cheaply and e�ec-

tively using a novel form of active contour to track planar features on the gripper

and target.

Such a system has been implemented and found to be highly robust, without

unduly sacri�cing performance (in terms of speed to converge on the target).
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Chapter 4

Indicating the Target Object

This chapter describes a human{computer interface which tracks a point-

ing hand, in order to specify objects and locations for robotic pick and

place operations. The system is implemented using uncalibrated stereo

vision.

4.1 Introduction

In order to make use of visual feedback in uncalibrated stereo, the target object

must be indicated to the system in terms of image measurements. If there is more

than one object visible in the scene, some means must be chosen to select the desired

object for grasping, and to indicate the place to which it is to be moved.

This could be accomplished using a mouse to indicate points in one or both

images. This is reliable if somewhat inelegant, and requires a workstation, or similar

user-interface hardware, in close proximity to the work area. Alternatively, the

operator could interact with the cameras already in place to indicate the target

directly. The latter approach is explored here. An interface based on pointing is

developed, to select objects on a planar table top.

We use a pair of monochrome cameras to observe the robot's work space and

pointing hand in stereo. Active contours are employed to track the hand in real time.

Using a simple result from projective geometry, the system can calculate where the

hand is pointing to on the plane, without camera calibration, to an accuracy of

about 10mm.
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4.2 Geometrical framework

A single view of a pointing hand is ambiguous: its distance from the camera can-

not be determined, and the `slant' of its orientation cannot be measured with any

accuracy. This means that the `piercing point', where the line de�ned by the hand

intersects the work surface, is constrained to a line, which is the projection of the

hand's line in the image. A second view is needed to �x its position in two dimen-

sions [106].

4.2.1 Viewing the plane

Consider a pinhole camera viewing a plane. The viewing transformation is a plane

collineation between some world coordinate system (X; Y ), and image plane co-

ordinates (u; v), thus: 2
6664

u

v

1

3
7775 � T

2
6664

X

Y

1

3
7775 ; (4.1)

where T is a 3 � 3 transformation matrix. The full perspective form of the trans-

formation is used in this case because the workspace will generally be large and

possibly foreshortened in one or both images.

The system is homogeneous, so we can �x t33 = 1 without loss of generality,

leaving 8 degrees of freedom. To solve for T we must observe at least four points.

By assigning arbitrary world coordinates to these points (e.g. (0; 0), (0; 1), (1; 1),

(1; 0)), a new coordinate system on the plane is de�ned, which we call working plane

coordinates.

Now, given the image coordinates of a point anywhere on the plane, along with

the image coordinates of the four reference points, it is possible to invert the relation

and recover the point's working plane coordinates, which are invariant to the choice

of camera location [88]. The same set of reference points in the world can be observed

in a stereo pair of views, to compute two transformations T and T0, one for each

camera.

4.2.2 Recovering the indicated point in stereo

With natural human pointing behaviour, the hand is used to de�ne a line in space,

passing through the base and tip of the index �nger. This line will not generally
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be in the ground plane but intersects the plane at some point. It is this point (the

`piercing point' or `indicated point' ) that we aim to recover. Let the pointing �nger

lie along the line lw in space (see �gure 4.1). Viewed by a camera, it appears on

line li in the image, which is also the projection of a plane, P, passing through the

image line and the optical centre of the camera. This plane intersects the ground

plane G along line lgp. It can be seen that lw lies in P, and the indicated point in

lgp, but from one view we cannot see exactly where.

Note that the line li is an image of line lgp; that is, li = T(lgp), where T is

the projective transformation1 from equation (4.1). If the four reference points are

visible, this transformation can be inverted to �nd lgp in terms of the working plane

coordinates. The indicated point is constrained to lie upon this line on the plane.

Repeating the above procedure with the second camera C0 gives us another view

l0i of the �nger, and another line of constraint l0gp. The two constraint lines will

intersect at a point on the ground plane, which is the indicated point. Its position

can now be found in terms of the projective basis formed from the four reference

points. This is similar to a construction used by Quan and Mohr [106], who present

an analysis based on cross-ratios. Figure 4.2 shows the lines of pointing in a pair

of images, and the intersecting constraint lines in a `canonical' view of the working

plane (in which the reference point quadrilateral is transformed to a square).

By transforming this point with matrices T and T0, the indicated point can be

projected back into image coordinates. Although the working plane coordinates of

the indicated point depend on the con�guration of the reference points, its back-

projections into the images do not. Because all calculations are restricted to the

image and ground planes, explicit 3-D reconstruction is avoided and no camera

calibration is necessary. By tracking at least four points on the ground plane, the

system can be made insensitive to camera motions.

4.2.3 Projective versus a�ne transformations

Assuming a weak perspective view of the plane, we could substitute an a�ne trans-

formation between views for the projective one: this would require only 3 reference

points. However, in this case there is little gain in robustness or simplicity using the

a�ne model that would o�set the loss of accuracy caused by perspective distortion.

1This is a slight abuse of notation, since for the standard representation of a line the appropriate

transformation matrix is T�1. Here T() refers abstractly to a plane projective transformation

which may be applied to points, lines or other image features.
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gp
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lw

l
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C

Figure 4.1: Relation between lines in the world, image and ground planes

il
lgp

lgp’

li
’

(a) (b) (c)

Figure 4.2: Pointing at the plane. By taking the lines of pointing in left and right

views (a, c), transforming them into the canonical frame de�ned by the four corners

of the grey rectangle (b), and �nding the intersection of the lines, the indicated

point can be determined; this is then projected back into the images.
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This is because we are considering points on a plane, using only 2-D projective

transformations: these do not su�er the same sensitivity to noise as would a full

3-D reconstruction.2 Errors in localising the 4 reference points result in only local

inaccuracies in the projective transformation (see table 4.1, page 65).

We are interested, in the �rst instance, in the open-loop accuracy with which

the indicated point may be recovered. With the camera setup used in these exper-

iments, the ground plane is large and signi�cantly foreshortened, and this would

cause signi�cant errors in a formulation based on a�ne transformations.

4.2.4 Pointing in a multi-faceted environment

The above geometrical framework relies on the target surface being planar in order

to estimate the constraint lines lgp, l
0

gp and their intersection. This can be extended

to environments consisting of more than one plane.

For each planar surface, we need 4 corresponding points, and a description of the

surface's boundary, e.g. as a polygon, in either view (recall that the 4 points de�ne

a transformation between views, allowing the boundary to be `transferred' into the

other image). Given two views of a pointing hand, we can now ascertain which facet

is being pointed to as follows:

� For each facet, test if the pointing line in each view intersects the facet's image

boundary in that view.

� If so, solve for the piercing point and test that it too lies within the boundary

of the facet.

� Where the pointing line intersects more than one facet, choose the one nearest

to the �ngertip. Distances to the �ngertip of points along this line may be

compared in either image.

Note that whilst this requires at least 4 correspondences per facet,3 and a priori

models of the surfaces and their boundaries in the images, the entire process is image-

based and does not rely on a 3-D reconstruction of the hand or the environment.

2This is partly due to our choice of working plane coordinates and the use of four reference

points in a rectangle, resulting in a well-conditioned T which is close to an a�ne transformation.

3For smaller facets which are not strongly foreshortened, 3 correspondences may su�ce and an

a�ne stereo model can be used.
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4.3 Tracking a pointing hand

4.3.1 Background

There has been a lot of interest lately in the use of hand gestures for human{

computer interfacing: they are intuitive for the operator, and provide a rich source

of information to the machine. This type of interface is particularly appropriate in

applications such as virtual reality, multimedia and teleoperation [123, 40, 9]. Most

current commercial implementations rely on sensors that are physically attached to

the hand, such as the `DataGlove' [39]. More recently, systems have been proposed

using vision to observe the hand. Some require special gloves with attachments or

markings to facilitate the localisation and tracking of hand parts [135, 26], but others

operate without intrusive hardware. This is attractive because it is convenient for

the user and potentially cheaper to implement.

A large number of systems have been proposed for visual tracking and interpre-

tation of hand and �nger movements without gloves. These systems can broadly be

divided into:

� those concerned with gesture identi�cation (e.g. for sign language), which com-

pare the image sequence with a set of standard gestures using correlation and

warping of the templates [29], or classify them with neural networks [13];

� those which try to reconstruct the pose and shape of the hand (e.g. for tele-

operation) by �tting a deformable, articulated model of the palm and �nger

surfaces to the incoming image sequence [69].

Common to many of these systems is the requirement to calibrate the templates or

hand model to suit each individual user. They also tend to have high computational

requirements, taking several seconds per frame on a conventional workstation, or

expensive multiprocessor hardware for real time implementation.

4.3.2 Approach

Our approach di�ers from these general systems in an important respect: we wish

only to recover the line along which the hand is pointing, to be able to

specify points on a ground plane. This considerably reduces the number of degrees

of freedom which we need to track. Furthermore, because the hand must be free

to move about as it points to distant objects, it will occupy only a relatively small
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fraction of the pixel area in each image, reducing the number of features that can

be distinguished.

In this case it is not unreasonable to insist that the user adopt a rigid gesture. For

simplicity, the familiar `pistol' pointing gesture was chosen. The pointing direction

can now be recovered from the image of the index �nger, although the thumb is

also prominent and can be usefully tracked. The rest of the hand, which has a

complicated and rather variable shape, is ignored. This does away with the need to

calibrate the system to each user's hand.

4.3.3 Tracking mechanism

A form of edge-seeking active contour model [64, 22, 56] was used to track the image

of a hand in the familiar `pointing' gesture, in real time. The tracker is an active

contour, resembling a B-Spline snake [22], but constrained to deform only a�nely

in the images. It is based on a template, representing the shape of the occluding

contours of an extended �nger and thumb (see �gure 4.3).

The tracker's motion is restricted to 2-D a�ne transformations in the image

plane, which ensures that it keeps its shape whilst tracking the �ngers in a variety of

poses. This approach is suitable for tracking planar objects under weak perspective

[12]; however it also works well with �ngers, which are approximately cylindrical.

A �rst-order temporal �lter is incorporated into the tracker, to predict the future

position of the contour, improving its real-time tracking performance. The �lter is

biased to favour rigid motions in the image, and limits the rate at which the tracker

can change scale | these constraints represent prior knowledge of how the hand's

image is likely to change, and increase the reliability with which it can be tracked.

The dynamics of the tracker are described in more detail in appendix A. It is similar

to the trackers we use to track the robot's gripper in stereo images, to provide visual

feedback.

To extract the hand's direction of pointing, we estimate the orientation of the

index �nger by �tting a pair of parallel lines to its image edges. The base of the

thumb is also tracked to de�ne the length of the index �nger, and to resolve an

aperture problem [131] induced by the �nger's long thin shape.
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4.4 Pointing experiment

The above geometrical framework and tracking mechanism were implemented, to

indicate points on a planar table top with a pointing hand. The two cameras were

about 2m from the scene, angled about 20o apart.

4.4.1 Setup

In this experiment, the corners of a coloured rectangle on the table-top were used

to de�ne the working coordinate system. A pair of �nger-trackers (one for each

camera) were initialised, one after the other, by the operator holding his or her

hand up to a template in the image and waiting a few seconds while it `moulded'

itself to the contours of the �nger and thumb. Once both trackers were running,

the hand could be used as an input device by pointing to places on the table-top.

In this implementation, the position and orientation of the �nger trackers, and the

indicated point on the plane, were updated about 10 times per second.

4.4.2 Performance

Figure 4.4 shows the system in operation. The corners of the white rectangle are

the four reference points, and the overlaid square shows the position of the indicated

point. Movements of the operator's hand caused corresponding movements of this

point in real time.

Visual tracking can follow the hand successfully for several minutes at a time;

however, abrupt or non-rigid hand movements could cause one or both of the trackers

to fail. Because it samples the image only locally, a failed tracker will not correct

itself unless the user makes a special e�ort to recapture it.

Users reported that the recovered point did not always correspond to their sub-

jective pointing direction, which is related to the line of sight from eye to �ngertip

as well as the orientation of the �nger itself. Initial subjective estimates of accuracy

were in the order of 20{40mm. If the user received feedback by viewing the system's

behaviour on a monitor screen, a resolution within 10mm could be achieved. It is a

natural human skill to servo the motion of one's hand to control a cursor or other

visual indication.

The system was also tested in a multi-planar environment (�gure 4.5). The

planes were represented by 9 given correspondences, which also de�ned bounding

quadrilaterals. The user could then indicate points on 3 surfaces: transition between

planes occurred automatically as the piercing point crossed their boundaries.
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(a) (b)

Figure 4.3: The �nger-tracking active contour (a) in its canonical frame (b) after an

a�ne transformation in the image (to track a rigid motion of the hand in 3-D).

(a) (b)

Figure 4.4: Stereo views of a pointing hand. The two views are shown side by

side. In each view an active contour is tracking the hand. The inlaid square is a

representation of the indicated point in working plane coordinates.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.5: Pointing in a multi-planar environment: (a,b) pointing to the top surface

of the object; (c,d) pointing to the sloping panel; (e,f) if the pointing line intersects

neither of the above surfaces, it defaults to the ground plane.
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4.4.3 Accuracy evaluation

To evaluate our system, we calculated the uncertainty of the image coordinates of the

hand and reference points in our experimental setup. Using Monte Carlo methods,

these were propagated into working plane coordinates, to assess the accuracy of the

indicated point.

I. Finger tracker uncertainty

We can obtain a measure of uncertainty for the �nger's position and orientation in

the image by considering the residual o�sets between modelled and observed image

edges. These are the components of the normal o�sets that remain after �tting a

pair of parallel lines to model the index �nger's occluding edges, with least-squares

perpendicular error. They take into account the e�ects of image noise and occlusion,

as well as pixel quantisation e�ects, and mismatches between the model and the

actual shape of the index �nger.

These o�sets indicated that the image position of the �nger's mid-line could be

determined to sub-pixel accuracy (standard deviation typically � = 0:3 pixels), and

the orientation to an accuracy of 0:6o. From this uncertainty measure �2� bounds

were calculated for the lines li and l0i; and, by projecting these onto the ground

plane, the uncertainty in the indicated point could be estimated.

Figure 4.6 shows the results for three di�erent con�gurations of the cameras,

with a 95% con�dence ellipse drawn around the indicated point. The constraint line

uncertainties were much the same in each trial, but the uncertainty on the indicated

point varied according to the separation between the stereo views: when the cameras

were close together, the constraint lines were nearly parallel and tracker uncertainty

became very signi�cant (�gure 4.6a); as the baseline was increased and the stereo

views become more distinct, the constraint lines met at a greater angle and accuracy

was improved (�gure 4.6c).

II. Reference point uncertainty

In the above experiments, reference points were identi�ed in the images by hand, and

we assume an uncertainty of 1 pixel standard deviation (in an application, techniques

exist to allow points or lines to be localised to higher accuracy, and errors may be

reduced by observing more than 4 corresponding points { this is therefore a rather

conservative estimate of accuracy).
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Left Image Canonical View Right Image

(a)

(b)

(c)

Figure 4.6: Indicated point uncertainty for 3 di�erent camera con�gurations: 2�

bounds for the pointing lines, their projections into working plane coordinates, and

error ellipses for the indicated point, when the angle between stereo views is (a) 7o

(b) 16o (c) 34o. The uncertainty is greatest when the camera angle is small and the

constraint lines nearly parallel.
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We used Monte Carlo simulations (based around real-world con�gurations of

cameras, hand and table) to assess the impact of this uncertainty on the coordinates

of the indicated point. The results (table 4.1) show that this source of error is less

signi�cant than the tracker uncertainty, and con�rm that the system is not especially

sensitive to errors in the reference point image coordinates. Again, the errors were

most signi�cant when the camera separation angle was small.

(i) (ii) (iii)

Angle between Working plane Working plane Working plane

the cameras coordinate error coordinate error coordinate error

(with tracker noise) (with ref. point noise) (with both)

7o .119 .040 .124

16o .044 .019 .047

34o .020 .008 .022

Table 4.1: Simulated RMS error in working plane coordinates, due to (i) tracker

uncertainty derived from `residual o�sets' as detailed above; (ii) reference point

image noise, � = 1 pixel in each image; (iii) both. A value of 1.0 would correspond to

a positioning uncertainty of about 40cm (the width of the reference point rectangle).

III. Experimental accuracy

Ground truth about the position and orientation of a human �nger is, of course, very

di�cult to measure without intrusive equipment that could interfere with the stereo

vision system. We therefore tested the accuracy of the pointing system using an

arti�cial pointing device (�gure 4.7). The test pointer was a white cylinder, about

15cm long, bounded by black end stops and wrapped around a rod which could be

positioned by the robot arm to an accuracy of about 3mm. Whilst not identical

to a human hand, it had approximately the same dimensions and was tracked in a

similar manner.

A number of trials were carried out with the vision system tracking the rod as

it was aligned with points on a grid on the target surface. The RMS error was 2.3%

of the working plane coordinates, or 9mm in a 40cm workspace. The maximum

reported error was 3.7% (15mm).
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4.5 Robot control application

The proposed application for this stereo pointing system is to control a robot ma-

nipulator as it grasps and places small objects on a 
at table-top. This time the

four reference points were de�ned automatically by the robot itself in a plane a few

centimetres above the table.

4.5.1 Setup

The reference points were de�ned by observing the robot gripper itself as it visited

4 known points in a plane. The robot began by opening and closing its gripper,

and using the resulting image motion to initialize a pair of a�ne active contours

(similar to those used to track the pointing hand, described in Appendix A). It was

then tracked as it made deliberate motions across the plane. This not only de�ned

the working coordinate system but related it to the robot's own world coordinate

system. Finger-trackers were then initialised as before.

4.5.2 Performance

The robot was now instructed to move repeatedly to where the hand was pointing,

in the horizontal working plane raised 50mm above the table-top. By watching

the robot's motion, the operator was provided with a source of direct feedback of

the system's output, allowing him or her to correct for systematic errors between

subjective and observed pointing direction, and align the gripper over objects in the

robot's workspace.

When the distance between hand and workspace is large, the system is sensitive

to small changes in index �nger orientation (as one would expect). To reduce this

sensitivity, the operator maintains a steep angle to the horizontal, and points from

a distance of less than 50cm from the plane, whilst still keeping his or her hand

clear of the robot. One can then comfortably position the gripper with su�cient

accuracy to pick up small objects (�gure 4.8).

4.5.3 Using the interface to grasp objects

In experiments, it was found that two simple classes of object could be grasped

reliably without any further planning:
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Figure 4.7: Mechanical pointing device used to test the accuracy of the system. We

aligned the rod with known points on the workspace, and recorded its coordinates

as recovered by the vision system.

(a) (b)

Figure 4.8: Gestural control of robot position for grasping, seen in stereo.
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Small cylinders. For small upright objects on the plane, the grasping operation

is trivial and can take place without any further image processing (the grasp

con�guration being a function only of the target's position in two dimensions).

Using visual feedback or under the direct control of the user's gestures (�gure

4.8), the robot could be aligned with the target and the grasp executed.

Flat targets. The outer contours of the target's image were localised automati-

cally using a stereo pair of `expanding' B-spline snakes [21] initialised at the

indicated point, enabling both the position and orientation of the graspable

surface to be estimated using a�ne stereo. They could then be grasped using

visual feedback as described in chapter 3.

For successful grasping of more complex objects, it is necessary to incorporate some

sort of automatic grasp planning based on a stereo reconstruction of the target

object, to analyse the shapes of its visible surfaces. This is dealt with in chapters 5

and 6.

4.6 Discussion

This algorithm for resolving the direction of pointing proves to be usable and stable

in the presence of normal image noise. It does not require camera calibration because

all calculations take place in the image and ground planes. By tracking 4 points on

the plane it can be made invariant to camera motions.

The system presented here can be extended to situations in which more than

one surface can be pointed at; however, this requires an image-based model of those

surfaces and is harder to implement with moving cameras (because a large number

of world features would have to be tracked to maintain invariance).

The main challenge to this system is the real time tracking of a pointing hand

reliably in stereo. At present, this is only possible in an environment where there

is a strong contrast between the hand and the background. Tracking is currently

implemented on a standard workstation, and could be made more responsive using

specialised hardware. Colour vision might also be useful for segmenting the hand in

a cluttered scene.

Although subjective pointing direction depends on eye as well as hand position,

it is not necessary to model this phenomenon. Instead, by providing the operator

with feedback about the objective pointing direction (e.g. having a robot follow the
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pointing hand in real time), objects and locations may be speci�ed for pick-and-place

operations. However, in all but the simplest of robotic applications, this will need to

be combined with visual reconstruction of objects so that they can be appropriately

grasped.
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Chapter 5

Uncalibrated Stereo Facet

Reconstruction

In this chapter, existing stereo matching techniques are reviewed, and the

interaction between matching, reconstruction, and the epipolar geometry

is discussed. An algorithm is presented for matching line segments in

weakly calibrated stereo and organising them into planar facets for grasp

planning.

5.1 Introduction

Our goal in this chapter is to reconstruct, in an image-based frame, the shapes

of objects in the robot's workspace. Many robot grippers consist of two parallel

jaws, and such a mechanism is well suited to grasping objects with parallel planar

surfaces. Thus a useful representation of the object for grasp planning would be

a description of the visible planar facets. We shall assume that these facets are

bounded by straight edges: thus the problem becomes one of matching edges in

stereo views and recovering a description of the position and extent of each facet.

Our stereo vision system is weakly calibrated, meaning that the epipolar geome-

try and camera parameters are known only to a low level of accuracy, because only a

simple self-calibration process has been performed, and the cameras may be subject

to disturbances.

A large number of algorithms exist for stereo correspondence: they are sum-

marised in section 5.2. None of these was entirely suitable for our purposes. Corre-

lation and corner-based systems can be used to recover both structure and epipolar
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geometry, but are unable to match some indoor scenes in which corners are sparse,

similar in appearance to one another, or con�ned to a few planes. Edgel-based

systems give excellent results with recti�ed images, but are sensitive to errors in

epipolar geometry because they match along epipolar lines. Line segment matching

is more robust in weakly calibrated stereo, but the 3-D reconstruction of lines can

be inaccurate unless extra constraints (such as junctions and coplanarity) are taken

into account.

A novel system was therefore developed, extending existing algorithms for line

segment matching and incorporating image-based coplanarity grouping, to recon-

struct scenes composed mainly of straight edges and planar facets.

5.2 Review of stereo matching techniques

To reconstruct a scene from a stereo pair, it is necessary to �nd which points in the

two views correspond to the same point in space. This is known as the stereo corre-

spondence problem. For object reconstruction or recognition, the matched features

must then be grouped to form surfaces and objects.

5.2.1 Feature extraction

Correspondence algorithms (reviewed in [98]) operate either on individual pixels

or general patches of the images, or more commonly on a smaller set of features

extracted independently in each image (see �gure 5.1):

Intensity-based matching. In some cases, pixels on corresponding epipolar lines

in the two images can be matched by their intensities [104], but this is easily

defeated by noise, re
ectance characteristics or di�erences in the photometric

response of the cameras. To overcome noise and camera response di�erences,

the outputs of local �lters are considered, such as the smoothed derivative

of intensity along the epipolar lines, or the ratio of intensity derivative to

intensity [126].

Cross-correlation. Patches between images can be matched by looking for max-

ima of normalised cross-correlation or some other measure of similarity be-

tween the views [91]. This assumes that the apparent motion of each patch

between views is a translation, i.e. depth variations are small.
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(a) (b)

(c) (d)

Figure 5.1: Features extracted from an image: (a) original image; (b) corners detec-

ted using INRIA corner �nder [138]; (c) edges detected using Canny's algorithm [14];

(d) straight line segments �tted to edges.
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Edgels. These are points of maximal intensity gradient after smoothing with a �lter

designed to reject noise [14, 30], or `zero crossings' after convolving with r2G

at a given scale [81, 45]. This provides a reasonable distribution of matchable

features across the images which are well localised and also geometrically very

signi�cant, often coinciding with depth or orientation discontinuities [100, 32].

Corners. These are points around which intensity variation occurs in more than

one direction, making them good candidates for matching by cross-correlation

as well as points of likely geometrical signi�cance. They can be detected using

ratios of �rst and second-order di�erential operators to �nd edge-like points

having maximal curvature [94, 132], or points of maximal auto-correlation

after Gaussian smoothing [57]. By matching only the corners, the complexity

of the correspondence problem is greatly reduced; the rest of the scene can be

reconstructed by interpolating between corners using triangulation [55].

Line and curve segments. Edgels generally exhibit continuity and are grouped

into chains in each image. These chains can then be segmented into straight

line segments [6] or parametric curves such as B-splines [47, 17], and entire

segments matched between images, reducing the computational complexity.

In the presence of noise and quantisation errors, lines and parametric curves

can be localised to higher precision than individual pixels. However, the seg-

mentation of chains is not always stable with respect to viewpoint changes, so

the matches between images are not always 1-to-1 [84].

Higher-level features and groupings. In some environments in which the forms

of objects are modelled it is possible to apply `perceptual grouping' to features,

organising them into higher-level structures by the detection of symmetry,

parallelism, clustering or similarity within the image [80, 74]. By matching

entire groupings, the search space for correspondence is reduced. Systems

have been proposed which match a hierarchy of features, using both bottom-

up monocular grouping and top-down stereo matching [87, 20].

5.2.2 Matching constraints

Most stereo systems exploit the epipolar constraint which restricts the search for

matching features to a one-dimensional one. Often they require the images to be
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recti�ed. Limits may be imposed on the magnitude of the horizontal disparity

between views, e�ectively bounding the depth range of reconstructed features.

A pair of features lying within the allowed window of disparity are considered a

candidate match if they are su�ciently similar in appearance (e.g. for edgels, if their

orientation di�erence is within a certain range). However, ambiguities often arise,

which can be resolved only after considering the interactions between candidate

matches. Constraints used to disambiguate matches include:

Uniqueness. A point in the world has only one 3-D position at a time. Therefore

a feature in one image can match at most one feature in the other [82]. This

constraint can be broken when matching group features such as curve segments

which may be organised di�erently in each image [84, 6].

Ordering. The order of matching features along the epipolar lines will usually be

the same in both images [7]. This constraint is occasionally broken at the

occluding edges of slender objects, or where there is transparency [98, 60], but

is obeyed by most images of opaque solid objects.

Surface shape. Constraints can be imposed on the shape of reconstructed or in-

terpolated surfaces, to aid matching. The simplest of these are smoothness

constraints, which assume local planar structure [60, 83]; and limits on the

disparity gradient , to favour a continuous variation of depth [100]. These con-

straints cannot be applied at occlusion boundaries in the images.

Continuity. When matching edgels, it can be assumed that edgels that are con-

tinuous in the image also connect in space, and that the disparity of an edge

will change smoothly along its length as it crosses the epipolar lines [98, 95].

Similarly line or curve segments which meet at a point in one image are likely

to correspond to segments which meet in the other [101].

5.2.3 Matching algorithms

Many algorithms have been proposed for binary matching for computer vision and

other applications. The problem in general is to �nd the subset of the candidate

matches (of which there are up to n2 where n is the number of features) which give

an optimal correspondence between images, subject to given matching constraints.

To a large extent, it is the form of those constraints which determine the algorithm

used and its complexity.
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With only the uniqueness constraint, a procedure such as the `stable marriage'

algorithm of Knuth et al. [66] can recover the optimal set of matches. This iterates

through the features of one image, enumerating the candidate matches for that

feature and choosing the one with greatest strength, whose feature in the other

image is not already associated with a stronger match. A record is kept of the best

match found so far for each feature. Complexity is O(n2) in the number of features.

Where additional mutual exclusivities must be imposed, a further depth of iteration

is required to �nd all the matches, and complexity rises to O(n3).

For edgel matching, correspondence can be formulated as a dynamic program-

ming problem in which a `path' must be found across each epipolar plane obeying

the ordering and uniqueness constraints whilst seeking to minimise the disparity gra-

dient, visiting each accepted match in left-to-right order [7]. Complexity is O(n3)

in the number of edgels on each epipolar line. Results can be enhanced by using

connectivity information from the neighbouring epipolar planes [95], but this greatly

increases computational complexity.

Correlation-based region matching can be made more e�cient by imposing sur-

face shape smoothness constraints and by the use of multi-scale algorithms that

estimate disparities at successively �ner resolutions [93]. Such an approach has also

been applied to edge matching using a bank of r2G �lters of di�erent sizes [44].

In general, stereo matching of discrete features can be posed as a cooperative

problem, with matching constraints taking the form of mutual positive or negative

support, and/or mutual exclusivities between sets of two or more matches. Such a

problem can be solved by a relaxation algorithm [82, 100, 84, 20]. Essentially, this

iteratively updates the support given to each candidate match so as to minimise an

objective function encoding the matching constraints, until all matches have been

selected or rejected. An algorithm of this class will be used in section 5.4 in the

design of our weakly-calibrated matching system.

The general form of a stereo vision system is summarised in �gure 5.2.
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Left

image

Right

image

Features Features

Candidate
matches

Final
matches

Reconstruction

Edge/corner detection

Cooperative
matching constraints

matching constraints
Correlation

between features

Image-wide

Invert camera model

Figure 5.2: Overview of the steps and data representations of a typical feature-based

stereo matching algorithm.
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5.3 Uncalibrated stereo considerations

The behaviour of stereo matching systems with uncalibrated cameras is now dis-

cussed. Corner-based matching can be used to recover both scene structure and

epipolar geometry, provided there is a su�cient density of correct matches. Edge-

based matching is denser and more robust, but cannot be used to update the epipolar

geometry directly. Hence reconstruction is sensitive to recti�cation errors, and un-

calibrated reconstruction is not generally possible. Coplanarity constraints are one

way to resolve this problem, and groups of coplanar features can be identi�ed in

uncalibrated stereo and reconstructed up to an a�nity.

5.3.1 Point features

Much recent work on reconstruction without a prior epipolar constraint has relied on

point features such as corners. These can be matched in stereo [138] and successfully

tracked over long sequences of images in structure-from-motion [10], especially in

natural scenes which tend to be rich in non-repeating texture. Robust statistical

methods such as ransac [38] enable the fundamental matrix to be estimated even

when there is a proportion of false matches [138, 127, 70]. The epipolar constraint

enables most of the erroneous matches to be rejected, and the scene reconstructed

up to a projectivity or a�nity (as in chapter 2).

Figure 5.3 shows the results of the uncalibrated corner matching algorithm of

Zhang et al. [138] on some indoor test scenes. The system uses cross-correlation

between views to match corners, and a relaxation algorithm to enforce the uniqueness

constraint; a fundamental matrix is then �tted to the correspondences using a robust

estimator (Least Median of Squares [110]), and the matching process repeated using

the recovered epipolar constraint.

This algorithm works well on highly textured or heterogeneous scenes (such as

the lab images in �gure 5.3c) where many corners can be localised and matched by

cross-correlation, correctly recovering both the epipolar geometry and a dense set of

correspondences. However, with simpler images (such as �gure 5.3d), the density of

correctly matched points is lower. The `corners' detected in the images do not always

coincide with polyhedral corners. Thus in the absence of texture, corners alone may

not give a su�ciently detailed reconstruction for surface modelling, e.g. for robot

grasp planning.
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(a)

(b)

(c)

(d)

Figure 5.3: Results of corner matching [138] and estimated epipolar lines: (a) cube

scene; (b) test scene; (c) lab scene; (d) blocks scene. Sparsity of corners and high

incidence of coplanarity leads to incorrect solutions in (a) and (b).
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On some images, such as the test and cube pairs, uncalibrated corner matching

fails entirely: the corners look too similar to be distinguished by correlation, and

the predominance of planar facets proves to be a hindrance rather than a help: large

coplanar subsets of points can defeat the robust estimator and lead to a degenerate

solution for the fundamental matrix (�gure 5.3 a, b).1

5.3.2 Edge-based features

We shall now consider the feature type most prominent in many indoor scenes, edges.

Because they are localised in only one dimension, matching of edge elements depends

upon prior estimation of the epipolar constraint, and edgels tangent to the epipolar

lines cannot be matched uniquely [100]. This is the aperture problem in stereo [131].

But by grouping the edgels into line or curve segments, complexity is reduced and

the epipolar constraint can be relaxed to require that matching segments overlap

when projected into the recti�ed vertical axis (that is, their ranges of y and y0 values

intersect), the degree of overlap indicating how well aligned the segments are in the

two views [6, 137]. This allows some segments to be matched with only approximate

epipolar calibration.

Ayache [6] presents an algorithm for matching line segments in recti�ed stereo

pairs, in which matches give support to each other if they are nearby (according

to a coordinate bucketing scheme) in both views. Hypothetical matches are formed

between line segments if the y coordinate of the midpoint in one image falls within

the range of y0 values of the other (and vice versa), and if their lengths and ori-

entations are similar within limits inferred from the camera geometry [4]. Matches

are accepted if they give rise to maximal cliques of supporting matches under the

uniqueness constraint. Reconstruction is performed under the assumption that the

cameras are accurately calibrated.

Zhang [137] has used a numerical search method to solve for the camera motion

(hence the epipolar constraint), given two intrinsically-calibrated images of matched

line segments, by seeking to maximise the total epipolar overlap, thus permitting

uncalibrated reconstruction. However, the system is not well constrained, and a very

large number of segments is required for a satisfactory solution.

1One way to avoid this problem would be to search for sets of points consistent with a degenerate

model (e.g. planes), then solve for the epipolar constraint using whatever features (if any) remain.

This is essentially the approach taken by the plunder motion segmentation algorithm [127].
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5.3.3 The problem with vertical disparity

Consider the case when the epipolar constraint is inaccurately modelled. Corre-

sponding features will exhibit misalignment or vertical disparity .2 This vertical

disparity will a�ect the 3-D reconstruction of any one-dimensional features such as

edgel chains, lines and curves, which depend on the epipolar geometry to establish

matching points and recover depth. What is more, the error varies with orientation:

each unit of o�set induces a horizontal disparity error of tan �, where � is the angle

to the vertical (horizontal lines cannot be reconstructed at all). Figure 5.4 shows

the results of this error, and its disruptive e�ect on plane reconstruction.

The vertical disparity problem can be overcome if line or curve segments are

known to have matching endpoints: one can simply solve for the 3-D coordinates of

the endpoints in some approximate (a�ne) world frame, or use them to re-estimate

the fundamental matrix. This is not always the case in real images, due to the

fragility of line �tting and segmentation (in the case of curve segments, it may be

possible to match other distinguished points such as bitangencies for plane curves,

or tangencies to the epipolar lines [102, 5]). However, where line segments meet at

a junction in space | and more generally where they are coplanar but not parallel

| their intersections in two images can be used as accurate point correspondences;

this is exploited in section 5.5.

5.3.4 Coplanarity grouping of line segments

For the reconstruction of planar surfaces, it is necessary to group matching line

segments into planar facets. Plane grouping could take place between matching and

reconstruction; it could also be performed concurrently with the matching process,

to favour candidate matches which belong to well-supported planar facets.

Coplanarity of line segments cannot be detected unambiguously in a single image,

but requires stereo. Lines that are parallel in two weak perspective images are

necessarily coplanar in space, though they might not be physically connected. Line

segments which meet at a junction in both images are generally coplanar, unless the

junction has been caused by occlusion (a `broken T-junction').

2The terms horizontal , vertical and disparity are used here to mean the x, y and (x0 � x)

quantities in a recti�ed coordinate system. This does not imply that both images must be recti�ed,

merely that some estimate of the epipolar constraint is available by which recti�ed coordinates

could be calculated.
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(a) A pair of synthetic images of 20 line segments,

and side view reconstructed from horizontal disparities

(b) The same images o�set vertically by about 2% of the image height

(c) One of the images has been rotated by 3�,

causing non-uniform vertical disparity

Figure 5.4: The e�ect of vertical disparity on edgel-chain, line or curve segment

reconstruction in recti�ed stereo. Because the error induces a horizontal disparity

that varies with orientation, the planar structure of the scene is destroyed.
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With known epipolar constraint

Coplanarity can be tested using the following theorem: Two non-parallel lines

are coplanar if and only if their intersections in two images lie on cor-

responding epipolar lines.3 Whereas if they are not coplanar, there will be a

vertical o�set between their apparent intersections in the two images (in fact, this

o�set or pseudo-disparity is a cue to the depth di�erence of the segments [78]). This

test is sensitive to errors in the epipolar geometry, though appropriate limits can

be placed on the amount of vertical disparity allowed. Its resolution is therefore

degraded as epipolar constraint uncertainty increases.

With unknown epipolar constraint

Even without camera calibration or an epipolar constraint, a pair of images can be

segmented into planar regions by the following theorem: Two views of a planar

surface are related by a two-dimensional projective transformation; fea-

tures are consistent with this transformation if and only if they lie on the

plane. In weak perspective, the transformation will be a�ne (see chapter 2).

Faugeras and Lustman [34] use this theorem to recover correspondence of line seg-

ments on a single plane, by hypothesising a set of matches that de�ne a collineation

between views, and testing for consensus with other segments. A Kalman �lter is

used to re�ne the estimate of the transformation. They show that two views of the

plane allow structure and motion to be computed up to scale and a two-fold ambi-

guity (for intrinsically calibrated cameras). The ambiguity can be resolved using a

second plane or a third view. The principle is not tested on more complex scenes.

Sinclair and Blake [118] use 2-D projective invariants to detect sets of 5 or

more coplanar points (given corner correspondences) and construct an approximate

piecewise-planar model of terrain with application to mobile robot navigation.

A drawback of this method is that it requires a minimum of four (or three) lines

or points to de�ne the projective (or a�ne) transformation, and at least one other

feature to verify it. Hamid et al. [52] show that, for a typical stereo camera geometry,

feature localisation must be to sub-pixel accuracy to segment nearby planes reliably

using such an algorithm alone.

3Outline proof: For the lines to intersect in both views at corresponding epipolar lines, each

line must exhibit the same disparity where it crosses this epipolar plane, therefore they must be

at the same depth. This is degenerate if one or both lines are horizontal.
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5.4 An algorithm for uncalibrated matching

This section describes a stereo matching algorithm which operates on line segments.

It is based upon existing techniques, but has been designed to deal explicitly with

the bounded uncertainty in epipolar line correspondence found in weakly calibrated

stereo. Figural relations between segments are analysed to add robustness.

5.4.1 Feature extraction

It was found that corners and correlation-based algorithms do not always give the

required density and resolution of reconstruction for the recovery of facets. Edgel-

based matching along epipolar lines was also rejected because of the problem of

epipolar misalignment, which could disrupt planar surfaces. Edge segment matching

was therefore chosen. For simplicity only straight edges are considered here; though

much of our approach could be extended to curve segments.

Line segments were extracted from Canny edgel data [14] using a recursive algo-

rithm that searches for straight segments of edgel chains (�gure 5.1(d), p73). Each

segment is represented by its endpoint coordinates; and associated with it are un-

certainty measures for its orientation and normal o�set, obtained from the residual

errors after �tting it to the edgels by orthogonal least squares [122].

5.4.2 Monocular relations

Consider �gural relations between just two line segments in a single image (�gure

5.5). It is assumed that the edges are extracted in such a way that segments do not

cross. Notable binary relations include:

Parallelism. Parallelism between segments (within some given margin of error)

can be determined very quickly using an orientation bucketing scheme. It is

obviously not meaningful to look for the intersection of parallel lines.

Collinearity. This is a special case of parallelism. Collinearity is used to extend

the uniqueness constraint to line segments: because of the fragility of line

segmentation, one or more collinear segments in the �rst image may match

one or more collinear segments in the second.
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Junction. This occurs when an endpoint of one segment in an image lies within

some maximum distance of an endpoint of another segment, suggesting that

the edges are coincident in space.

Collinear junction. This occurs when segments are collinear and meet at a junc-

tion. Such junctions are not generally stable between views; they could also

be a component of a `broken T-junction' between occluding and occluded seg-

ments.

T-junction. This occurs when the endpoint of one segment lies close to another

segment. It suggests an occlusion boundary.

The system identi�es these relations between segment pairs in each of the two images.

The threshold angle for parallelism was set to 3o greater than the given orientation

uncertainty, to detect parallel lines in the presence of optical distortion or mild

perspective e�ects. For junction detection, endpoints were required to be within

6 pel (or up to 12 pel for longer or more uncertain segments) of a point extended

3 pel out from the other segment's endpoint. These limits were chosen to defeat

the observed `corner-rounding' behaviour of the edge detection and line �tting code,

caused by the isotropic smoothing stage of Canny's algorithm.

(a) (b) (c)

(d) (e) (f)

Figure 5.5: Binary �gural relations between line segments in a single image: (a) gen-

eral case (b) parallel (c) collinear (d) T-junction (e) junction (f) collinear junction.
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The search for related segments could be accelerated considerably by sorting

them into `buckets' [65] of segments whose orientations or endpoint coordinates lie

within particular intervals: for a typical image of 200 segments with 2000 related

pairs, execution time is approximately 0.25 seconds.

5.4.3 Candidate matches

The next stage in the algorithm is the enumeration of `candidate matches,' or seg-

ment pairings between images that could possibly be images of the same edge in

the world. To generate these, an approximate epipolar constraint is required |

this can be a linear estimate, provided by just four reference points4. The matching

criteria are based on those of Medioni and Nevatia [84] and Ayache [6], with some

adaptations for weakly calibrated stereo:

� Epipolar overlap as a fraction of total vertical extent (min. 25%),

� Length ratio in a `vertically stretched' recti�ed frame (max. 3),

� Orientation di�erence in the recti�ed frame (max. 60o),

� Disparity limits extrapolated from the disparities of the reference points.

The constant values speci�ed in the criteria were chosen by hand to optimise per-

formance, though the system is not critically sensitive to any of them.

Notes:

1. The epipolar overlap criterion is broadened somewhat by allowing up to 16 pel

of vertical o�set, to overcome recti�cation errors. This allows many nearly-

aligned segments to be matched (including horizontal ones) even when they

show no overlap at all.

2. Length and orientation comparisons are performed in a `vertically stretched'

recti�ed coordinate system. This gives more weight to the direction normal to

the estimated epipolar lines which should be invariant to viewpoint changes;

but also takes into account the component along the epipolar lines, to allow

near-horizontal features to be compared and matched. For typical stereo cam-

era con�gurations, length and orientation di�erences will be within the above

bounds for all except the most foreshortened of matching segments.

4If no reference points are available, it is assumed that the epipolar lines are approximately

horizontal and the range of permitted disparities is �100 pel.
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Angle threshold and orientation-based support:

aij =

8<
:

2(cos �ij � 0:5) if cos �ij > 0:5,

0 otherwise.

Length-ratio threshold and support:

bij =

8>>><
>>>:

1:5(Li=L
0

j � 0:33) if Li < L0

j < 3Li,

1:5(L0

j=Li � 0:33) if L0

j < Li < 3L0

j,

0 otherwise.

Epipolar overlap constraint and support:

�ij =
overlap(yi[0]::yi[1]; y

0

j[0]::y
0

j[1]) + 16:0

max(yi[0]; yi[1]; y0

j[0]; y
0

j[1])�min(yi[0]; yi[1]; y0

j[0]; y
0

j[1])

cij =

8>>><
>>>:

4
3
(�ij � 0:25) if 0:25 < �ij < 1,

1 if �ij > 1,

0 otherwise.

Midpoint disparity limits:

�ij =
1
2
(x0

j[0] + x0

j[1] � xi[0] � xi[1])

dij =

8<
:

1 if �MIN < �ij < �MAX

0 otherwise.

Overall intrinsic support of the candidate match:

�ij = aij bij cij dij

Table 5.1: Algebraic summary of the constraints for a candidate match between

segments. i and j are segment numbers in the �rst and second image respectively.

Angles and lengths are in a `stretched' recti�ed frame in which the vertical compo-

nent has double weight. The pair is considered a candidate match if �ij > 0.
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3. Matches are only permitted on segments having the same sense in each image,

i.e. originating from edges having the same sign of gradient. Practically all

correct matches will meet this criterion (except occasionally at an occlusion

boundary where there is background intensity variation), whilst a further 50%

of false matches are rejected [6].

Again, bucketing is used to speed up the search, indexing the segments which in-

tersect a number of epipolar bands. Each test assigns a number to the candidate

match, indicating by what margin the criterion is met; these are multiplied to yield

the intrinsic support of the match (see table 5.1).

In tests with 8 stereo pairs of blocks and laboratory scenes, between 5%{20% of

the line segments in each image could not be matched according to these criteria, and

about 50% had more than one candidate match. The average number of candidate

matches per line segment varied between 1.5 and 3.0.

5.4.4 Inter-match constraints

In our scheme, matching constraints are expressed by two types of relations be-

tween candidate matches: mutual exclusivities between pairs of matches (hereinafter

dubbed rivals), and mutual positive support between matches (friends). The

ordering constraint is extended for weakly calibrated stereo, and a novel connectivity

constraint is introduced, based on junction relations common to both images.

Uniqueness constraint. Matches that share a segment in either image are rivals,

unless they are collinear and connected in the other image (as this could be

due to fragmentation of the edgel data).

Ordering constraint. For approximately recti�ed stereo views, we extend the or-

dering constraint to matches that `cross over' in a vertical as well as a hori-

zontal sense (�gure 5.6). `Epipolar ordering' is tested for segments that inter-

sect one another's projection onto the (recti�ed) vertical axis in both views;

`General ordering' is violated by segments that cross one another during a lin-

ear warp between views (assuming matching endpoints), which was found by

human inspection to be an important cue for spotting inconsistent matches.

Out-of-order matches are rivals.

Collinearity. Matches that are collinear in both images are friends (since this

does not generally happen by accident, it suggests they are correct matches

and derive from collinear features in the world).
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(a) (b)

1

2 1’

2’

Figure 5.6: Ordering constraint violation by segments with vertical disparity: mat-

ches 1 and 2 are out of order | they `cross over' between views (a) and (b), even

though they are ordered in the direction of the estimated epipolar lines.

Connectivity. Matches are friends if they have common junction or T-junction

relations in both images; but rivals if they have incompatible junction rela-

tions (i.e. they meet at di�erent endpoints, implying a large relative motion

between views).

5.4.5 Constraint propagation

Our goal is to try to �nd a set of matches with maximal total support, consistent

with all the matching constraints. The solution should favour pairs matches which

are friends of other chosen matches, but not include any pairs of rivals.

This is achieved by an iterative algorithm that propagates friend and rival

constraints between matches. To start with, a proportion of each candidate match's

intrinsic support is added to the support of each of its friends.

At each iteration, we enumerate the `winning' matches having greater support

than any of their rivals5. A proportion of the least ambiguous winners is then

selected | these are the winners with the greatest support di�erence over their

nearest rival. These matches are considered correct: their friends receive extra

support, and their rivals are eliminated. As matches are eliminated, they withdraw

the support that they earlier gave to their friends. The process repeats until all

matches have been either promoted or eliminated.

5The search is made e�cient by use of the uniqueness constraint which partitions the matches

into small sets of rivals (where there are multiple collinear matches, for simplicity only one is

promoted at each iteration).
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This is a `some-winners-take-all' algorithm (similar to that described by Zhang

et al. [138] in the context of corner matching; cf. [100] for a related strategy for edgel

matching). In our implementation, only 1
4
of the winning matches are promoted on

the �rst iteration, as this helps to prevent early convergence to a local minimum;

thereafter this rises to 2
3
. As with other relaxation algorithms, an optimal solution

is not guaranteed, though the �nal set of matches must be consistent and locally

optimal. Convergence is assured so long as at least one winner is promoted each

time, and generally occurs after 4{10 iterations. With the use of suitable data

structures, already-matched segments can be skipped, making each iteration faster

than the previous one.

5.4.6 Epipolar constraint re-estimation

If the initial estimate of the epipolar geometry was inaccurate (or missing, and

assumed horizontal), it is useful to recompute the epipolar constraint and repeat the

matching process. We use the junction relation between segments to �nd intersection

points that correspond between views. There are very few outliers amongst such

points, but some of the junctions may be false intersections generated by occlusion

(`broken T-junctions'); therefore, an iterative re-weighting scheme is used to reject

those furthest from their supposed epipolar lines.6 The parameters of the epipolar

constraint (in the form of equation 2.9) are estimated using linear least squares.

Often the number and accuracy of correspondences is improved by repeating the

matching process using the newly recovered epipolar constraint and disparity limits.

It should be noted that the above matching algorithm can function even with some

epipolar mismatch, and there is never any bene�t to repeating the process more

than twice.

5.4.7 Results

Figure 5.7 shows how the algorithm matches line segments on a pair of simple `cube'

images by propagating quali�ed uniqueness, epipolar ordering, general ordering and

connectivity constraints. The cameras were arranged by hand to be roughly recti�ed,

but no calibration was performed. 39 and 40 line segments were detected in each

image. Correspondence was solved for 35 segments in four iterations.

6The weight for each point match is proportional to 16� jy0�yj and falls to zero for junctions

with vertical o�sets above 16. Just 4 junctions within this range are required for the method to

be successful.
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(a)

(b)

(c)

(d)

Figure 5.7: Matching by constraint propagation: (a) line segments from the cube

images; (b) `least ambiguous' segments matched on the �rst iteration; (c) segments

matched after 2 iterations; (d) �nal result reached after 4 iterations.

Uncalibrated views | epipolar lines roughly horizontal.
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(a)

(b)

(c)

(d)

Figure 5.8: Matched (black) and unmatched (grey) segments from 4 stereo pairs:

(a) test scene (no calibration); (b) roof scene (given 4 point correspondences);

(c) lab scene (recti�ed using corner matching); (d) blocks scene (no calibration).
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Figure 5.8 shows matching output for 4 other stereo pairs. The matcher was run

twice on the test and blocks images in order to recover the appropriate epipolar

geometry and disparity range (results of second pass shown). For the roof images,

these were obtained by hand-matching four points, and for the lab scene, using the

INRIA corner matching system; ground truth calibration data were not available.

In all cases a linear epipolar constraint is used. Results are good, considering that

no surface shape constraint has yet been imposed; however there are a number of

false correspondences | typically unconnected short segments without a true match

which become associated with one another more or less randomly.

Reconstruction is not attempted at this stage.

5.4.8 Complexity analysis

Feature extraction. Line segment extraction is based upon edge detection, which

is quite slow on general-purpose hardware due to the convolution stage. This

takes a constant time for a given image area, and is independent of the number

of features. For simple `blocks world' scenes, edge detection is the slowest part

of the entire stereo algorithm (taking about 10 seconds per image).

Monocular relations. Although bucketing is used to reduce the complexity in

simple scenes, in clutter the search for related pairs reverts to O(n2). Let the

number of relations per line segment be r (usually much less than n).

Enumeration of candidate matches. As above, this has complexity O(n2). Let

the number of candidate matches be nm.

Enumeration of friends. This involves enumerating the pairs of candidate mat-

ches for each pair of segments related in one image. Complexity is therefore

O(nrm2) which in clutter tends to O(n3).

Constraint propagation. The uniqueness constraint makes this e�cient,7 since

each iteration need only traverse the list of candidate matches once (O(nm))

to �nd the subset of at most n with more support than any uniqueness-rival.

Each of these must be compared with O(n) other promoted matches to test

for rivalry, and the number of iterations is itself bounded above by n. In the

7Even where multiple collinear matches abound, their number is implicitly limited by the criteria

for a candidate match, which each must meet.
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absence of friends, overall complexity is between O(n2) and O(n3) . With f

friends per match, time is required to adjust the support of the friends of

matches which are destroyed, with complexity O(nmf).

It is noted that the complexity depends not only on the number of line segments

in the images but also on the number of junctions and other relations between

segments (which also a�ects the number of friends). Where this is small, overall

complexity is O(n3) but in pathological images (such as when all line segments

radiate from a point), r tends to n, f tends to nm, and complexity approaches

O(n4).

5.5 Coplanarity grouping

We now consider the integration of plane grouping into the stereo system, using

the paradigm of [34, 118] and others. Coplanar sets of segments are identi�ed by

consensus with an a�ne transformation between views. In uncalibrated stereo it is

important that coplanarities be detected before full 3-D reconstruction is attempted,

so as to reduce the disparity errors caused by epipolar misalignment. Rather than

occurring after correspondence, plane hypothesis and grouping are incorporated into

the cooperative matching stage and introduce a shape constraint (see table 5.2, p98).

5.5.1 Plane hypothesis formation

A plane hypothesis is an a�ne transformation between views, de�ned by a set of

three (or four, if there is parallelism) matching segments called a seed . It would

be computationally expensive to enumerate all the triplets of candidate matches, so

seeds are generated only from promoted matches, and heuristics employed to choose

the seeds most likely to lie on planar facets.

Three forms of seed were considered:

� Triangle form (�gure 5.9a). This consists of three matching segments, whose

intersections in two images lie close to corresponding epipolar lines (i.e. they

are pairwise coplanar, allowing for epipolar misalignment), and whose direction

vectors in (u; v; disparity) space form a triple product close to zero (i.e. their

directions in 3-D are approximately coplanar). To reduce the search space, we

require that two of the intersections be junctions in both images. A triangle

gives a minimal de�nition of an a�ne transformation between views.
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� Parallel form (�gure 5.9b). Because many facets are rectangular, a second

form of seed was allowed, in which two segments are parallel, and may even

be horizontal, and are joined by a third segment so that the intersections in

two images lie close to corresponding epipolar lines. The lines are likely to be

coplanar but do not de�ne a unique a�ne transform. Therefore an endpoint or

junction with a fourth segment (which need not itself be coplanar) is required

to fully de�ne the transformation.

� Parallelogram form (�gure 5.9c). Parallelograms in the images are often

produced by rectangular facets in the world, but due to edge fragmentation

these do not always yield seeds of the above form. Therefore a variation of the

parallel seed was introduced, formed from two pairs of parallel segments which

meet at two opposite junctions and de�ne more than half of the perimeter of

a parallelogram. The junctions and one of the other intersections are used to

de�ne the a�ne transformation.

Plane hypotheses are systematically enumerated out of the promoted matches as

these emerge from the correspondence process; each is then tested for consensus

with previously promoted matches as well as with candidate matches.

(c)

(b)

(a)

Figure 5.9: Forms for plane seeds, consisting of 3 or 4 matching segments: (a) trian-

gle form; (b) parallel form; (c) parallelogram. In each case, two intersections (blobs)

and an additional endpoint or intersection (circle) provide a minimal basis for the

a�ne transformation.
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5.5.2 Hypothesis testing and coplanar segment support

To test for coplanarity, promoted or candidate matches are tested for consensus

with the a�ne transformation de�ned by the seed (�gure 5.10). The test consists

of `transferring' the line de�ned by the segment from one view into the image coor-

dinate frame of the other, and comparing it with the matching segment. The test

is performed symmetrically in both directions between the views. No assumption is

made about endpoint correspondences,8 but the segments are required to `overlap'

on the plane by at least 33% of each segment's length.

Although Canny's algorithm can detect step edges to sub-pixel accuracy [14], it

can produce correlated errors which do not manifest themselves in the residual errors

after line �tting. Rather than propagating the residual errors, a simple threshold

of 2.0 pel normal o�set at the endpoints was chosen (cf. [52]). Candidate matches

consistent with one or more hypotheses received extra support in the matching

process (table 5.2).

Complexity

The number of plane hypotheses is proportional to the number of triples of connected

line segments, which is approximately nr2. Let there be h plane hypotheses. The

testing of promoted and candidate matches for consensus with each plane hypothe-

sis increases the computational complexity of the matching/grouping algorithm by

O(nmh). In most scenes, h=n is small and complexity varies O(n3), so the speed of

the algorithm is not signi�cantly reduced.

Results

The above forms of plane seed were successful at identifying most of the planes in

the test images without generating many false hypotheses, although planes without

three connected edges were missed. Many of the facets produced several hypotheses,

but these did not always return the same consensus set; and occasionally a segment

was wrongly grouped as belonging to two or more con
icting hypotheses. Such

problems are inherent in any threshold-based test, in which noisy inliers cannot be

perfectly separated from nearby outliers. Figure 5.11 shows successful plane seeds

8Segments at a small angle (< 10o) to the epipolar lines must also have at least one end-

point consistent with the transformation. This inelegant extra constraint is necessitated by the

degenerate behaviour of horizontal lines.
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and their consensus sets on the cube pair.

Despite the varying accuracy of coplanarity grouping with di�erent seeds, it was

found that candidate matches belonging to a coplanar group were almost invariably

correct matches | we conclude that grouping by common a�ne transformation is

valuable as a matching constraint as well as a cue to reconstruction. By giving these

matches extra support in the disambiguation process, a signi�cant improvement was

seen in the accuracy of correspondence.

Figure 5.12 shows the matched segments on the test, roof, lab and blocks

scenes which were consistent with one or more plane hypotheses | matches are

sparser than �gure 5.8, but more reliable.

(a) (b)

(c) (d)

Figure 5.10: Plane grouping by consensus: (a,b) a `seed' used to generate a plane

hypothesis; (c,d) segments consistent with the a�ne transformation.
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� for each pair of line-segments intersecting corresponding epipolar bands

� evaluate the pair as a candidate match

� if criteria met, calculate intrinsic support

� for each candidate match

� enumerate friends (using monocular �gural relations)

� each match gives extra +ve support to its friends

� while candidate matches remain

� enumerate winning matches with more support than any rival

� sort winners by support di�erence over nearest rival

� for a proportion of the least ambiguous winners

{ promote winning match to a con�rmed match

{ for each of its rivals

� withdraw support from its friends

� destroy the rival match

{ give extra support to friends

{ enumerate plane seeds that can be formed with promoted matches

� for each new plane seed

{ for each other candidate or promoted match

� test for consensus with a�ne transformation

� give +ve support to coplanar candidate matches

{ if there are � 4 supporting matches, record plane hypothesis

Table 5.2: The combined matching/grouping algorithm, which forms line segment

matches, propagates friend and rival constraints, and generates plane hypotheses

which help to guide the matching process.
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Figure 5.11: Plane seeds (bold) and �nal matches consistent with the a�ne trans-

formation for the cube pair. The seed on each plane with the largest consensus

set is shown against the original image (left view). Apparent duplicates are where

di�erent junctions have been used to disambiguate a parallel seed.
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(a)

(b)

(c)

(d)

Figure 5.12: Matching results for the test, roof, lab and blocks scenes, showing

only matches consistent with one or more plane hypotheses (in black).
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5.5.3 Hypothesis selection

We have now obtained reliable correspondences for line segments, and a set of plane

hypotheses consisting of an a�ne transformation between views. This may be quite

large, and contain multiple hypotheses for each plane. We must therefore select an

appropriate set of hypotheses to form a global segmentation of the scene into planar

groupings.

If we can assume that the scene contains a discrete set of planes, rather than

gently curving surfaces, we would expect the consensus sets of plane hypotheses to

exhibit convexity in the neighbourhood of each plane | that is, the most represen-

tative model for each surface will be the one with the largest number of supporting

segments, and hypotheses further from the actual plane model will have smaller

consensus sets.

The following rule is therefore applied to select locally optimal plane models,

and reduce the number of hypotheses: If a plane hypothesis has at least half

of its consensus set of edges in common with another hypothesis, which

has a larger or equal consensus set, the �rst hypothesis is discarded. To

prevent unnecessary deletions, the hypotheses are �rst sorted into descending order

of support.9 The rule is then applied in turn to each pair until all duplicates have

been deleted.

Results

The cube images are correctly segmented into the three planes marked in �gure

5.11. Note that one short edge segment is incorrectly assigned to both the top and

right faces of the cube. Figures 5.13 to 5.16 show the plane models recovered from

the test, lab, roof and blocks scenes.

The test and blocks images yield a small set of distinct planes, which include

all of the prominent planes in the scenes. Several of the edge segments are (correctly)

grouped as belonging to two adjacent facets; there are also a few `accidental' group-

ings of unconnected segments which are approximately coplanar with another facet.

Grouping accuracy is noticeably coarser for edge segments close to the horizontal

(the approximate direction of the epipolar lines).

9Where hypotheses have the same size of consensus set, they are ordered according to the total

length of supporting edge segments.
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Figure 5.13: Planes recovered in the test scene

Figure 5.14: Planes recovered in the lab scene
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Figure 5.15: Planes recovered in the roof scene

Figure 5.16: Planes recovered in the blocks scene
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For successful plane segmentation, a reasonably large camera baseline is needed

(inter-camera angle above about 20o), and the conditions for weak perspective must

be met by all visible surfaces. The two general scenes do not obey these conditions,

and are less accurately segmented: in the lab scene, the ceiling is strongly foreshort-

ened and becomes split into two distinct groups; in the roof scene, distant planes

cannot be resolved from one another, and the gabled buildings and skyline are all

grouped together as a single plane.

5.5.4 From planes to facets

By matching edges, we have obtained an essentially wire-frame description of the

scene, and whilst it is possible to detect coplanar sets of line segments, these do

not uniquely de�ne the actual surfaces: this is known as the �gure{ground problem.

Some a priori assumptions must be made in order to resolve it and obtain a surface

description.

For the purposes of this investigation, we de�ne as facet to be the union of

connected sets of coplanar edges whose convex hulls10 intersect one another. It is

assumed that such groupings de�ne physical surfaces in the scene. We allow for

the possibility that two or more distinct facets conform to the same plane model.

There may also be some isolated edges which conform to the plane model but are

not attached to any facet | these `accidental' coplanarities are not used for surface

reconstruction (they also account for most of the cases in which a near-horizontal

edge has been incorrectly grouped with one or more planes).

Formation of facets

To enumerate the facets, each plane model is partitioned into connected components

(by extending the junction relation between edge segments) and the convex hull of

each component formed in a cyclopean image (coordinates averaged between views).

Components whose convex hulls intersect are considered to belong to the same

facet; thus facets can be built up by a simple merging process. This scheme success-

fully segments most of the facets of the indoor scenes | results are shown in the

following section.

10A convex hull in 2-D is the smallest convex polygon enclosing a set of features. In the case of

line segments, it is the same as the convex hull of all their endpoints.
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5.6 Edge and facet reconstruction

Both coplanarity and connectivity constraints can be brought to bear on the recon-

struction of line segments in three dimensions, to overcome the inherent inaccuracy

of edge-based stereo when the epipolar constraint is not precisely known.

In the absence of full camera calibration, features can be reconstructed in a space

whose basis consists of three linearly independent combinations of the (u; v; u0; v0)

coordinates. Where weak perspective applies, this will result in an a�ne recon-

struction. Here we choose to reconstruct features in (1
2
(u+u0); 1

2
(v+v0); (u0�u))

space: that is, cyclopean image coordinates and disparity in the u direction. This

is a convenient image-based representation of the scene.11 Because the endpoints

of matching edge segments may not coincide between views, we reconstruct their

union in space, using the outermost pair of the four visible endpoints [6].

5.6.1 Facet reconstruction

Before reconstruction begins, the a�ne transformation de�ning the plane of each

facet is re-estimated from its �nal set of consistent edges by linear least squares

(recall that previously, it was de�ned only by the seed edges for the entire plane-

group). To reconstruct edges on a facet, this a�ne transformation is used to obtain

point correspondences between views. An a�ne transformation can also be derived

which will transfer the facet to a plane within the 3-D cyclopean{disparity space.

A number of edge segments may lie on more than one facet, because the facets

intersect on that line, or are very nearly coincident. In such cases, good results were

obtained by averaging the endpoint coordinates of the segment over the relevant

facets. The use of facets to constrain reconstruction allows us to overcome vertical

disparity, which cause errors in the reconstruction of edges close to the horizontal,

as well as removing the component of any noise perpendicular to the plane.

5.6.2 Facet boundary description

The simplest description of a facet boundary is its convex hull; but this supposes

that all facets are convex. Many of the test objects studied had non-convex facets

(sometimes L or C shapes), whose concavities correspond to sites where grasping

11For camera con�gurations close to `parallel,' the disparity coordinate will be nearly orthogonal

to the cyclopean coordinates and may be considered a measure of depth.
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might reasonably be attempted. We therefore form a bounding polygon in the

cyclopean view which is a slightly modi�ed convex hull: for each segment of the

convex hull which does not correspond to a physical edge but whose endpoints lie

on a connected component, we search for a chain of connected edges that bridges

the gap whilst still enclosing all the edges of the facet. If such a bridge exists, it will

be unique and may be interpreted as a concavity in the boundary of the facet.

This procedure allows concavities to be detected whenever there is a connected

boundary, and reverts to a convex hull where the matched edges are patchy or

fragmented.

5.6.3 Reconstruction of other edges

Where edges do not lie on any facet, junction relations are applied where available,

to increase the accuracy of reconstruction; otherwise, we must revert to using the

estimated epipolar constraint to reconstruct line segment matches:

Edges with a junction at both ends. If a segment has a junction at both ends,

the intersection points at the two junctions are taken to be the corresponding

endpoints of the segment, and reconstructed in the 3-D a�ne frame using

linear least squares (if there are multiple junctions to choose from, the ones

closest to the estimated epipolar lines are selected).

Non-horizontal edges with a junction at one end. The intersection point is

used to reconstruct one of the ends, and the other is reconstructed using

epipolar constraint information, on the assumption that the o�set between

predicted and actual epipolar lines is the same across the length of the segment,

which is generally true if the segment is short.

Non-horizontal edges. For the remaining edges making an angle of more than

10o to the epipolar lines in both views, the estimated epipolar constraint is

used to reconstruct their union in 3-D space.

This leaves a small number of unconnected ungrouped edges parallel to the epipo-

lar lines. These are degenerate, and cannot be accurately reconstructed in stereo,

without some additional constraint. They are therefore discarded.
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5.6.4 Results

I. Epipolar constraint based reconstruction

This is the traditional approach to stereo reconstruction of edges [7, 100, 6, 32], but

it gives poor results in weakly-calibrated stereo, since contours at small angles to

the epipolar lines are very sensitive to small errors in epipolar geometry.

Figures 5.17(a) and 5.18(a) show the output of the matching algorithm recon-

structed using the epipolar lines to form point correspondences, with synthetic top,

cyclopean and side views of the blocks and test scenes. The depths of recon-

structed features are disrupted, due to noise and to inaccuracies in epipolar con-

straint �tting.

II. Using endpoint coordinates

If the endpoints of corresponding line segments represented the same points in space,

they could be reconstructed without reference to the epipolar lines.

Figures 5.17(b) and 5.18(b) show reconstructions based on this assumption. It

is approximately correct for many of the edge segments, but fails for those which

have been fragmented by noise or truncated by occlusion. Errors in endpoint corre-

spondence can cause large errors in disparity.

III. Using coplanarity and junction constraints

Segments grouped in a facet are reconstructed using the a�ne transformation asso-

ciated with the facet to constrain their reconstruction in space. Other segments are

reconstructed using junctions, where present, to obtain point correspondences and

defeat errors in the epipolar geometry. The use of junctions is more robust than

endpoints. The remaining ungrouped segments are reconstructed using the epipolar

constraint.

Figures 5.17(c) and 5.18(c) show the blocks and test scenes reconstructed using

the algorithms proposed in section 5.6. Facet boundaries are also shown, in grey.

Using facets and intersections, the accuracy of reconstruction is greatly increased,

provided the groupings are correct; but in �gure 5.17(c) some of the segments on

the 
at object are incorrectly grouped as coplanar.

The modi�ed convex hulls correctly describe the boundaries of most of the facets.

Subjectively, this appears to be a good solution to the �gure{ground problem, in

the absence of detailed prior models of the objects in the scene.
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(a)

(b)

(c)

Figure 5.17: Reconstruction of the blocks scene illustrated by synthetic top, cyclo-

pean and side views, using: (a) epipolar matching only, (b) corresponding endpoints,

(c) facet grouping and junctions.
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(a)

(b)

(c)

Figure 5.18: Reconstruction of the test scene illustrated by synthetic top, cyclopean

and side views, using: (a) epipolar matching only, (b) corresponding endpoints,

(c) facet grouping and junctions.
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5.7 Discussion

5.7.1 Summary

In this chapter, existing ideas have been combined to form a novel algorithm for

stereo matching, grouping and reconstruction of line segments. The novelty of the

system is two-fold:

1. It has been speci�cally designed to operate in the `weakly calibrated' case in

which epipolar geometry is known up to a small error. The linear model of

epipolar geometry is used throughout. This gives the system robustness, as it

removes the need for accurate calibration, whilst retaining the disambiguating

power of an approximate epipolar constraint.

2. Image-based coplanarity grouping is integrated into an already complete stereo

matching algorithm: the combined system does not rely on the existence of

junctions or planes in order to match features between views, but if either are

detected, they are used to guide both matching and reconstruction.

The chapter also investigated the ways in which errors can degrade stereo reconstruc-

tion, and explained why some previous approaches are unsuited to weakly calibrated

stereo.

The new algorithm is best suited to weak perspective images of scenes dominated

by planar facets and straight edges, and gives excellent results in this case; it also

copes gracefully with more general indoor and outdoor scenes. The system does not

require precise calibration: 4 points provide an adequate estimate of the epipolar

geometry. It can even `bootstrap' its epipolar constraint from a suitable initial guess.

Much use has been made here of simple binary relations between segments, such

as the junction relation which is quick to determine, and has proven useful as a

grouping heuristic as well as a cue to 3-D structure. Image-based plane grouping is

another valuable tool for the matching, reconstruction and segmentation of indoor

scenes. Without it, reconstruction is sensitive to errors and planes can become frag-

mented. The subsequent use of 3-D grouping has been advocated [46, 6] to reduce

these errors, but this is only possible when the system is well enough calibrated that

planes may be reliably distinguished in space.
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5.7.2 Accuracy of plane and facet extraction

On images of polyhedral blocks, most of the surfaces were correctly detected. On

the views of more general scenes, planar facet recovery was less precise, because the

stereo system was operating close to the limits of camera resolution [52]. The system

also grouped very distant features into a single plane, and fragmented planes which

were distorted by strong perspective.

The extraction of facet boundary descriptions necessarily made use of ad hoc

assumptions which, whilst adequate for simple `blocks' type shapes, might require

modi�cation for more general use. For instance, it did not allow for the possibility

of facets with holes in them. The scheme presented here also neglects the analysis

of occlusion between facets, which can itself be a powerful cue to scene structure

and segmentation [41, 78].

5.7.3 Use of edge segment based stereo

The use of line segments to represent image features was successful in dealing with

images of polyhedral objects, but is less useful for matching more general scenes, par-

ticularly natural ones. It is probable that much of this approach could be extended

to the matching of parametric curve segments �tted to edges in the image.

Any feature-based stereo system depends on the extraction of primitives from

the images which are:

� accurately identi�ed and localised,

� matchable between images and stable with respect to viewpoint changes,

� su�ciently dense to recover the structure of the scene.

We have rejected a corner-based approach because it returns only sparse correspon-

dences, which are not always su�cient to describe the shapes and boundaries of

facets in the scene. A recent corner-matching algorithm [138] was tried on several

test images and found to be unsuited to polyhedral scenes, because the corners could

not be reliably distinguished by correlation. With sparse and often coplanar cor-

respondences, fundamental matrix �tting may fail even when a robust estimator is

used [127]. Edge segment matching is better suited to the reconstruction of depth

and orientation discontinuities which describe the visible surfaces, and �gural rela-

tions between segments (junctions) provide cues to the presence of coplanar subsets,

and permit epipolar constraint �tting and uncalibrated reconstruction.
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5.7.4 Computation time

Table 5.3 gives timings for all the images shown in this chapter.12 When operating

on uncluttered scenes, the matching and plane grouping algorithms are quite fast;

by far the slowest component is edge detection. When presented with more detailed

images, computational complexity approaches O(n3) in the number of line segments.

Execution time for matching, grouping and reconstruction of the cube pair was

under 1 second, whereas for the roof pair (the most cluttered of the test scenes) it

was 1.5 minutes.

Name cube test blocks lab roof

Image size 232�185 640�480 640�480 704�512 768�576

Number of line segs 39, 40 61, 61 174,131 584, 572 600, 544

Edge detection 2.3 14.1 14.2 20.4 22.8

Line segment �tting 0.2 0.4 0.6 3.6 4.5

Monocular relations 0.09 0.19 0.61 6.93 7.08

Enumerate matches 0.01 0.02 0.04 0.22 0.24

Enumerate friends 0.18 0.24 1.25 24.5 42.0

Matching/grouping 0.46 1.22 2.23 17.8 42.8

Hypothesis selection 0.17 0.27 0.27 0.41 1.81

Facets/reconstruction 0.04 0.08 0.13 1.21 2.76

Table 5.3: Timings in seconds for matching and reconstruction of the test images

12For a prototype implementation in `C', running on a SPARCstation 20.

112



Chapter 6

Visually Guided Grasping:

Implementation

This chapter describes a grasp planning scheme based on stereo recon-

structions of polyhedral objects, using simple rules to select an appropri-

ate facet and edge pair for grasping. The algorithms developed in this

dissertation are combined to implement visually guided grasping.

6.1 Introduction

Algorithms have been developed for robot grasping by visual feedback, the interpre-

tation of pointing gestures to specify objects to be grasped, and the reconstruction

of unknown polyhedral objects in uncalibrated stereo. Our ultimate goal is to com-

bine these algorithms into a visual grasping system whose operation comprises three

phases:

� Programming phase. The user indicates what operation is to be performed

using pointing gestures.

� Planning phase. The system uses robust stereo cues to determine the shape

of the object to be grasped.

� Execution phase. The system uses real-time visual tracking and feedback

to accurately align the robot gripper with its target.

The three parts of the system communicate in image-based terms, which are inde-

pendent of any estimates of the camera positions or parameters.
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To complete the system, we require grasp planning to select the appropriate

grasping operation for a given part. This is described in the following section. No

new theory is advanced, but it is shown that the stereo reconstructions of chapter 5

are su�cient to support grasp planning on block-like objects, using a simple scheme

which searches for parallel facet-and-edge pairs and tests for collision with a model

of the robot.

6.2 Grasp Synthesis

6.2.1 Introduction

Before grasping can be performed, it must be planned, to specify the robot con�g-

uration required to grasp the object successfully. For most robotic systems, grasps

are synthesised o�ine, either by hand or by analysis of CAD models [75]. The

grasping operation relies on recognition of the object in order to select and retrieve

the appropriate grasping method [103], although this may be parameterised to allow

for variations in the pose or dimensions of the object to be grasped.

Here machine vision is used to facilitate the grasping of an unmodelled object,

by means of stereo reconstruction of its visible surfaces. A grasp is planned for

a conventional parallel-jawed gripper. The grasp is de�ned in terms of one of the

reconstructed facets of the scene, and an edge segment behind it. Although the

evaluation of grasp sites requires metric information about the reconstructed scene,

they may be speci�ed in terms of image coordinates, and executed accurately using

image-based servoing.

6.2.2 Notes on grasp synthesis for a parallel gripper

Force closure

The robot used in this project has a parallel-jawed gripper with two padded �n-

gers. It is well known that such a gripper is suitable for grasping objects across

two parallel (or near-parallel) surfaces [92, 79, 11] by placing the contacts so that

both of the surface normals are at a small angle to the axis of the gripper (�gure

6.1). The maximum permissible angle is tan�1�, where � is a lower bound on the

coe�cient of friction. Provided the robot can withstand the necessary compressive,

frictional and torsional forces, such a grasp will achieve force closure, i.e. it will
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completely constrain the pose of the object and can resist external forces or torques

in any direction [92]. Grasps with a parallel gripper are always dynamically stable,

because the gripper mechanism constrains the relative �nger pose to a single degree

of freedom, so the angles between �nger and object surfaces cannot change while

the object is being grasped.

Other constraints

For a grasp to be permissible, it must not only have force closure but must be

feasible, i.e. within the physical reach of the robot, and collision-free, i.e. the robot

can adopt the grasping con�guration without colliding with this or any other object

other than at the points of contact. In a complete motion planning system, it must

also be checked that the grasp con�guration can be reached from a given starting

con�guration without collision, that the object can be carried away, and that the

grasp chosen is also suitable for putting the object down in the required place [75].

These higher-level path planning issues are not addressed here.

The general paradigm for parallel grasp planning [62] is therefore to search for a

pair of facets or patches which support a force closure grasp, hypothesise a suitable

robot con�guration to perform the grasp, and then to test the grasp for accessibility

and collisions; if the test fails, alternative grasp sites must be enumerated and tested.

Grasping smooth surfaces

On any smooth object, there will always be at least one parallel grasp at its maxi-

mum diameter, though this is not generally the only feasible grasp. Taylor and Blake

[11, 125] describe theory and algorithms for �nding extremal grasps, which are �nger

placements requiring a minimal coe�cient of friction to attain force closure, from a

B-Spline representation of an object's silhouette. The spline allows them e�ciently

to calculate the symmetry and asymmetry sets of grasping con�gurations (where the

angles between the normals at the grasp points and the line joining them are equal

on the same or opposite sides, respectively). These sets intersect only at parallel

grasps. A third set which they call the critical set is computed and used to �nd

grasps with local extrema of �. They extend their analysis from two-dimensional to

three-dimensional smooth convex objects, for which a band of the surface has been

reconstructed by using a B-Spline snake to extract its silhouette in multiple views

[22].
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General surfaces

When grasping general three-dimensional surfaces, the problem of grasp planning

is dominated by the search for force closure grasps, as the con�guration space (the

placement of two contacts on a 2-D surface) can be quite large. Rutishauser and

Stricker [111] describe a search for suitable grasps in scenes which have been recon-

structed by a laser range�nder. Range images from three di�erent viewpoints are

fused | this is so that some opposing parallel patches will be detected. The scene is

segmented by continuity into regions likely to correspond to individual objects, and

the system searches the space of pairs of contact points on each object to �nd opti-

mal grasps (using an objective function based on the local geometry of the contact

points to assess their suitability for a parallel gripper). A strategy known as tabu

search is employed [43], which combines steepest-descent with rules which cause it

to avoid previously-visited minima. This scheme allows multiple candidate grasps

to be enumerated, for selection by some higher-level planning process.

Summary

With a parallel gripper, grasps can be synthesised by searching for two nearly parallel

patches on which a pair of contacts may be placed within one another's friction cones.

For curved surfaces, the search space may be large. With a polyhedral model of the

object, the search is a simple task of complexity O(n2) in the number of facets,

followed by 2-D enumeration of point-pairs on those facets to test for feasibility and

collisions.

6.2.3 Hypothesising parallel surfaces

We have seen in chapters 2 and 5 how the planar facets of the target object may be

identi�ed in uncalibrated stereo, and their shapes and positions reconstructed in an

approximate metric frame using just a small number of calibration points.

From a single stereo pair of views, at most half of the object's surfaces will be

reconstructed { thus only one of each pair of graspable surfaces will be visible. The

presence of the opposing surface is therefore inferred by an appeal to symmetry:

we consider each edge segment which lies on the boundary of a visible facet, and

search for a parallel segment reconstructed behind it on the same 3-D connected

component (parallelism can be determined in the images without metric reconstruc-

tion). In the absence of other visual cues, it is a reasonable hypothesis that this
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edge segment marks the boundary of a parallel facet which may not be visible (see

�gure 6.2).

6.2.4 Feasible grasps

In many robot arm applications, the gripper approaches the workspace from above.

A 6-DOF arm is able to grasp surfaces of any orientation, but simpler 4- and 5-DOF

arms have restrictions on the orientation of the gripper. Here we restrict ourselves

to grasps in which the line joining the �ngers is horizontal, i.e. the graspable surfaces

are vertical. We therefore consider grasps only on surfaces which are within 20o of

the vertical in an approximate metric reconstruction.

Grasps are proposed on points on the edges of the graspable surfaces, since these

are the most accessible: we identify points on a front edge segment (the one on the

boundary of the visible facet) for which there is a corresponding point on the rear

(in the plane normal to the front edge). These are called grasp sites.

Due to the dimensions of the gripper, there is a maximum limit on the width, or

horizontal distance between the graspable surfaces.1 In this case it is 50mm. The

conditions for a feasible grasp are summarised in �gure 6.3.

6.2.5 Testing for collisions

It is important to choose a grasping con�guration which is free from collisions: that

is, in which the gripper does not intersect any part of the scene. To do this, we need

to model the shape and size of the gripper. A conservative model of the gripper

is shown in cross-section in �gure 6.4. The thickness of the model is 40mm. Note

that the model extends upwards, so as to guard against collisions with the robot

as it approaches its target from above. The model is used to test for intersections

between the gripper and any edge or facet of the scene.

Implementation

In our scheme, only the most central feasible grasp site of each facet-and-edge pair

is considered and tested for collisions. The collision testing process works as follows:

1. Edge segments and facets are enumerated which protrude above the `low water

mark'. This is the horizontal plane 25mm below the grasp site, which is the

1It is permitted for the front and rear edges to be the same, so that the width is zero.
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Figure 6.1: Grasping with a parallel gripper: the grasp is successful if the line joining

the contacts lies within the friction cone of each (i.e. the contact surfaces are nearly

orthogonal to the gripper's axis).

Figure 6.2: Inference of parallel surfaces from parallel edges: if two edge segments

on a 3-D connected component are parallel, one lies on a visible surface boundary

(dark grey) and the other is behind it, we hypothesise that there is a parallel surface

(light grey).
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angle to vertical
oangle to plane

o o

Horizontal width less than 50mm

angle to horizontal
less than 30 o

less than 20 70 -110

Figure 6.3: Summary of the conditions to be met by a pair of points on a facet and

edge pair, to be considered a feasible grasp for our robot.

width
7.5mm

100mm

25mm

25mm

POINT

50mm

7.5mm

GRASP

REAR
EDGE

Figure 6.4: Cross section of the robot gripper model used for collision checking.

The gripper approaches vertically from above. No visible features may intersect the

shaded region.
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plane of the �ngertips in the proposed grasping con�guration. Features are

clipped to this plane and projected into a plan view, to test for intersection

with either of two rectangles representing the volume swept out by the gripper

�ngers.

2. If there were no collisions with the �ngers, features are then clipped to the `high

water mark' 25mm above the grasp site. Features are tested for intersection

with a 40mm�100mm rectangle representing the upper part of the gripper.

In the unlikely event that there is more than one collision-free grasp on a facet, the

highest one is selected, as this is deemed to be the most accessible.

6.2.6 Results

Figure 6.5(a) shows the facets of the test scene which were within 20o of the vertical,

and their top edges within 30o of horizontal.2 Part (b) shows grasp sites correspond-

ing to parallel edges (including grasps of zero width) which meet the criteria for a

feasible grasp; part (f) shows the two grasps which survive collision testing.

Figure 6.5 parts (c{e) show plan views of the features which protrude above the

`low water mark' used in collision testing, for three feasible grasps. The bold rect-

angles represent the gripper �ngers. The last example indicates a collision between

a facet and one �nger of the gripper model. The other 4 feasible grasps (not shown)

also lead to collisions.

2No calibration data were available for this scene, so metric tests were performed on the as-

sumption that the cyclopean u, v and disparity axes were orthogonal, v vertical, with scales of

( 2
3
;
2

3
; 2) millimetres per pel respectively.

120



6.2. GRASP SYNTHESIS

(a) (b)

(c) (d)

(e) (f)

Figure 6.5: Parallel grasp planning on stereo reconstruction of the test scene:

(a) near-vertical facets and near-horizontal upper edges; (b) feasible grasp sites;

(c,d) plan views of successful grasp sites showing �nger placements; (e) grasp site

where �nger would collide with object; (f) collision-free grasps.
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6.3 Implementation

6.3.1 Setup

A stereo pair of CCD cameras were set up as usual, �xating on the robot's workspace

from a distance of about 2 metres with an inter-camera angle of about 20o. Camera

setup was somewhat constrained by the need to view the entire workspace, with

some room for the operator's hand, whilst maintaining a high enough resolution for

plane grouping to be reliable.

The image positions of the gripper are acquired as in chapter 3, by watching as

the robot opens and closes its �ngers. The gripper is then tracked as it visits a cage

of eight points: the lower four points are used for pointing and de�ne a plane a few

centimetres above the ground plane; these and the upper points are also used for

approximate stereo calibration and to determine the disparity limits of the robot's

workspace.

6.3.2 Pointing to the target object

Rather than try to construct a multi-faceted model of the scene, only single plane

pointing was used. This is because the test objects were quite small, and visible

facets were sometimes at a very shallow angle to the line of pointing: it would

therefore be unreliable to expect an operator to indicate a single facet by pointing

alone. Instead, the operator indicated a point on the working plane, which is a few

centimetres above the table, nearest to the desired object. The robot followed the

indicated point some distance above, to provide feedback to the operator (�gure

6.6(a,b)).

As implemented here, the pointing and grasp planning parts of the system do

not communicate with one another, and can be executed in either order.

6.3.3 Stereo reconstruction and grasp planning

For the next phase of operation, the operator removed his or her hand from the

scene, and a stereo pair of images was taken. Edge detection, line segment �tting,

stereo correspondence and facet description were performed (�gure 6.6(c,d)). The

grasp planning scheme described above was then executed.

In the example scene, the system detected only two permissible grasp sites, across

the top of the wedge-shaped object, and on the rear object. Not enough of the small
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cube was matched to generate a plane hypothesis, so it did not yield any grasp sites.

6.3.4 Grasp execution

The grasp site nearest to the indicated point was chosen for execution.

The image locations of the facet associated with the chosen grasp site were used

to initialise a pair of active contours (this was to detect any small movements of the

target object since the original stereo pair was taken). Tracking of the gripper was

reestablished, again by watching it open and close its �ngers.

Visual feedback was used to align the robot with the grasp site, �rst by mak-

ing it coplanar with the target facet, and then performing an open-loop grasping

manouever. The position of the grasp site was expressed in a coordinate system

based on the target facet.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.6: Visually guided grasping of an object: (a,b) stereo views of a point-

ing hand indicating the object to be grasped; (c,d) reconstruction of the scene;

(e) permissible grasp sites; (f) alignment using visual feedback.
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6.4 Discussion

A practical grasp planning scheme for collections of straight edges and facets has

been presented, which addresses the case in which only one side of the scene has been

reconstructed, by hypothesising unseen parallel surfaces at parallel edges. Simple

rules enumerate the grasp sites which can be reached from above by a parallel

gripper, and collision testing is used to check that no visible features will collide with

the gripper during grasp execution. Grasp planning has been used in conjunction

with uncalibrated stereo feedback, to execute a visually-speci�ed grasp.

For stereo reconstruction and grasp planning to be successful, camera setup and

lighting had to be carefully controlled, so that objects were observed at a high enough

resolution, and enough of their edges were correctly detected and matched; otherwise

suitable facet descriptions would not be generated and grasp planning would fail.

For instance, in the last example, no grasp sites were identi�ed on the small cube

because some of its edges were not reconstructed. Further work to improve the

robustness of edge segment detection and matching is desirable.

During the period in which edge detection and stereo matching are busy, the

robot is `blind' and cannot track any movements of the scene, contradicting our

requirement that the system be insensitive to camera motions. However, if the

image motion of the graspable facet is small, it will be located again when its active

contours are initialised, and can be tracked until the grasp is executed.
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Chapter 7

Conclusions

The dissertation concludes with a summary of the �ndings and contribu-

tions of this project, and notes some areas in which further investigation

is warranted.

7.1 Summary

This dissertation has explored the use of uncalibrated stereo vision; that is, stereo

vision in which accurate camera parameters are not initially known. This includes

systems in which a few reference correspondences are available, permitting an ap-

proximate epipolar constraint and a�ne stereo model to be �tted, which we have

called weakly calibrated .

A�ne stereo. In chapter 2, it was argued that a linear model of stereo vision

(a�ne stereo), developed from the weak perspective camera model, is well

suited to practical uncalibrated stereo systems, particularly when absolute

Euclidean reconstruction is not required. Although it is less accurate that the

projective model in noiseless calibrated systems, it is more robust to errors.

Numerical simulations have shown that the a�ne stereo model can be esti-

mated more accurately than the unconstrained projective model, from a small

number of noisy reference points, and that it is less sensitive to camera distur-

bances. Similarly, the �tting of the linear form of the epipolar constraint by

least squares is less sensitive to image coordinate errors than the more general

fundamental matrix form.
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We conclude that linear models are indeed a useful approximation to both the

epipolar constraint and the world{image relation, for practical stereo con�gu-

rations in which external cameras �xate on a compact scene.

Pointing interface. Chapter 4 showed how to interpret images of a pointing hand

in uncalibrated stereo, given an image-based description of the surfaces to

which the operator may be pointing. The method does not involve 3-D re-

construction, so avoids the di�culty of camera model estimation. Instead, it

models the transformation of planes between the images, which was found to

be well-conditioned.

A novel user interface was developed based on an a�ne template active contour

to track a pointing hand in real time. Its accuracy was evaluated, and it was

demonstrated as a means to control a robot, by interactively specifying points

for pick and place operations.

Uncalibrated matching and reconstruction. The problems of matching and

reconstruction in weakly calibrated stereo were investigated, noting the weak-

nesses of current methods for feature-based stereo reconstruction. A novel

stereo matching algorithm was developed incorporating image-based copla-

narity grouping and segmentation. This allowed an accurate `qualitative'

model (local shape up to an a�ne transformation) to be reconstructed with-

out calibration, and was robust to inaccuracies in the estimated epipolar con-

straint.

A�ne stereo visual feedback. The a�ne stereo model was exploited to develop

algorithms for visual feedback control of a robot manipulator, allowing it to

grasp an object by �rst aligning a surface on the gripper with one of the visible

facets of the object. A�ne active contours were used to track both the robot

and the target object. Since the (coplanar) alignment of robot and target

can be tested directly from image measurements, the system is insensitive to

disturbances or movements of the cameras.

The parts of the project are united by their use of image-based measurements, which

do not depend on estimates of the camera positions, or on Euclidean reconstruction.
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7.2 Future work

Implementation and integration of these systems revealed a number of weaknesses

which could bene�t from future work.

Active cameras. For the user interface and for controlling the robot, a broad

view of the workspace is required; but for accurate reconstruction of parts,

high resolution is needed. These con
icting demands constrained the camera

geometry and severely limited the size of the workspace relative to that of

the parts. This problem could be alleviated using cameras with zoom lenses,

mounted on pan{tilt heads, for active control of the �eld of view [89]. This

would be problematic for a stereo system dependent on calibration, as the

camera parameters would be continually changing [71], but should cause few

problems in a�ne stereo.

Feature detection. Throughout this dissertation we have relied on the detection

of edges in the images, for tracking, segmentation and the determination of

shape. These are subjectively the most prominent feature type in many poly-

hedral scenes; however, where surface markings were not present, not all of

the orientation and depth discontinuities could be detected as edges: con-

trolled lighting was required to reliably extract enough matchable features to

reconstruct all of the planar facets in some scenes.

The isotropic smoothing stage of Canny's edge detector [14], whilst providing

some robustness to noise and loss of distracting detail, degrades the localisation

of edges, causing nearby edges to interfere with one another (thus disturbing

the a�ne invariance of coplanar groups) and corners to be rounded and lost

(making junctions harder to detect). Better results might be obtained by

using an edge detection mechanism incorporating anisotropic smoothing of

the images [96].

Curved contours. Our stereo matching system uses straight line segments as its

primitive features, to reconstruct straight edges and planar facets on polyhe-

dral objects. However, many industrial parts are not polyhedral and exhibit

curved as well as straight contours.

In chapter 5 it was suggested that the much of our approach could be ex-

tended to curve segments: these can be matched using similar criteria to line

segments, using junctions to aid disambiguation; in the case of plane curves,
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matches can be veri�ed using a�ne invariant signatures [114] which establish

point correspondences and recover the a�ne transformation between views.

Coplanar curves may be grouped into planes by common a�ne transforma-

tion. Space curves not on a plane will not exhibit a�ne invariance between

views: these must be reconstructed (like ungrouped line segments) using the

epipolar constraint.

Contours may also be present that do not correspond to any markings or

discontinuities but are the silhouettes formed from rays tangent to a curved

surface. These apparent contours cannot be matched in stereo because they

do not correspond to the same space curve in two views (three nearby views

are required to reconstruct local surface structure [22]). A system for the

reconstruction of curved objects will need to identify such contours. One way

that this can be done is by noting that they generally meet surface contours

at a tangent.

Multiple views. The use of `parallel camera' stereo vision has meant that only

parts of a scene (those surfaces visible to both cameras) could be reconstructed,

and this has limited the generality of grasp planning from stereo. A multiple

camera system would enable more of the surfaces to be reconstructed. By

tracking the robot in more than 2 views, redundancy is introduced and the

robustness of vision-guided operations could be increased.

In his book, Ayache [6] makes a strong case for trinocular stereo vision. With

three or more cameras, the epipolar constraint is generalised (to the so-called

trifocal tensor [127]) so that `horizontal' segments no longer lead to degen-

eracy, and both structure and motion can be recovered from line matches.

Furthermore, the correspondence problem is simpli�ed, since a match hypoth-

esised from two views can be veri�ed by testing for a feature in the appropriate

position in the third (with uncalibrated stereo, however, this test is more com-

plicated as its position cannot be predicted precisely). However, the extension

of our algorithms to uncalibrated trinocular stereo was beyond the scope of

this investigation.
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A�ne template active contours

To track the contours of surfaces on the robot's gripper and and tar-

get objects (chapter 3), and of the user's pointing hand (chapter 4), a

real-time edge tracking mechanism was employed, based on a�ne active

contours.

A.1 Background

An active contour (or `snake' ) [64] is a curve de�ned in the image plane that moves

and deforms according to various `forces'. These comprise external forces, which

are local properties of the image, and internal forces which are functions of the

snake's own shape. Typically, a snake will be attracted to maxima of image intensity

gradient, and used to track the edges of a moving object.

More recent active contours have been proposed based on parametric curves

such as B-splines [22]. These are represented compactly by a small number of

control points from which the curve can easily be interpolated; the parametric form

automatically enforces smoothness, so that internal forces are not required. The

behaviour of the snake may be further restricted by imposing constraints on the

con�guration and motion of the control points; using principal component analysis,

snakes can even be trained to track particular classes of object [12].

Our model-based trackers are a novel form of active contour. They resemble B-

spline snakes [22] but consist of discrete sampling points, rather than a smooth curve.

In this respect they resemble 3-D model-based trackers [56]. Pairs of trackers operate

independently in the two stereo views. The trackers can deform only a�nely, to track

planes viewed under weak perspective: this constraint leads to a more e�cient and
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reliable tracker than a B-spline snake, that is less easily confused by background

contours or partial occlusion. The very simple design of the tracker permits fast

implementation and supports real-time tracking of multiple objects on a standard

workstation.

A.2 Anatomy

Each tracker has a predetermined a�ne shape, which may be modelled a priori

or derived from an existing B-Spline snake. It consists of a set of (of the order

of 100) sampling points evenly spaced around the predicted contour shape. At

each sampling point there is a local edge-�nder which measures the o�set between

modelled and actual edge positions in the image, by searching for the maximum

of gradient along a short line segment [28].1 Due to the so-called aperture problem

[131], only the normal component of this o�set can be recovered at any point (�gure

A.1).

i nih
sampling point

Image edge

Active Contour

Figure A.1: An active contour: The image is sampled in segments normal to the

predicted contour (dotted lines) to search for the maximal gradient. The o�sets

between predicted and actual edges (arrows) are combined globally to guide the

active contour.

The positions of the sampling points are expressed in a�ne coordinates, and

their image positions depend upon the tracker's local origin and two basis vectors.

These are described by six parameters, which change over time as the object is

tracked. The contour tangent directions at each point are also described in terms

1Two 
avours of snake were implemented: `two-sided' snakes which detect maximal edges with-

out regard to the sign of the gradient, and `one-sided' snakes which only detect edges with a

particular sense. The latter are more robust when tracking bright or dark objects amid clutter.
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of the basis vectors, and these are used to calculate the contour normal directions

along which the local edge detectors sample the image.

A.3 Dynamics

At each time-step the tracker's parameters are changed, enabling it to move and

deform to minimise the sum of squares o�set between model and image edges. In

our implementation this is done in two stages. First the optimal translation is found,

then the deformation, rotation, divergence components are calculated. Splitting the

task into these two stages was found to increase stability, as fewer parameters were

being estimated at once. To �nd the optimal translation t to account for normal

o�set hi at each sampling point whose image normal direction is ni, we solve the

following equation:

hi = ni � t+ �i: (A.1)

�i is the error term, and we solve the whole system of equations using a least-squares

method to minimise
P

�2
i
.

Once the translation has been calculated, the other components are estimated.

It is assumed that the distortion is centred about the tracker's local origin (normally

its centroid, to optimally decouple it from translation). The e�ects of translation

(ni �t) are subtracted from each normal o�set, leaving a residual o�set. We can then

�nd the matrix A that maps image coordinates to displacement.

(hi � ni � t) = ni � (Api) + �0
i
; (A.2)

where pi is the sampling point's position relative to the local origin and �0
i
is again

the error term to be minimised.

In practice this formulation can lead to problems when the tracked surface moves

whilst partially obscured (often, a tracker will catch on an occluding edge and be-

come `squashed' as it passes in front of the surface). It can also be unstable and

sensitive to noise when the tracker is long and thin. We therefore use a simpli�ed

approximation to this equation that ignores the aperture problem (equating the

normal component with the whole displacement):

(hi � ni � t)ni = Api + ei: (A.3)

ei is a vector, and our implementation solves the equations to minimise
P
jeij

2. This

produces a more stable tracker that, although sluggish to deform, is well suited to
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those practical tracking tasks where motion is dominated by the translation compo-

nent. The tracker positions are updated from t and A using a real time �rst-order

predictive �lter: that is, the velocity of the snake is estimated and used when cal-

culating the next placement of the sampling points, depending on the time delay

between iterations. This enhances performance when tracking fast-moving objects.

This ad hoc design was found to give good results tracking the robot gripper and

hand in real time.
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